Cargando…

Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli

Programmed ribosomal -1 frameshifting is a non-standard decoding process occurring when ribosomes encounter a signal embedded in the mRNA of certain eukaryotic and prokaryotic genes. This signal has a mandatory component, the frameshift motif: it is either a Z_ZZN tetramer or a X_XXZ_ZZN heptamer (w...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Virag, Prère, Marie-Françoise, Canal, Isabelle, Firth, Andrew E., Atkins, John F., Baranov, Pavel V., Fayet, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066793/
https://www.ncbi.nlm.nih.gov/pubmed/24875478
http://dx.doi.org/10.1093/nar/gku386
_version_ 1782322217345875968
author Sharma, Virag
Prère, Marie-Françoise
Canal, Isabelle
Firth, Andrew E.
Atkins, John F.
Baranov, Pavel V.
Fayet, Olivier
author_facet Sharma, Virag
Prère, Marie-Françoise
Canal, Isabelle
Firth, Andrew E.
Atkins, John F.
Baranov, Pavel V.
Fayet, Olivier
author_sort Sharma, Virag
collection PubMed
description Programmed ribosomal -1 frameshifting is a non-standard decoding process occurring when ribosomes encounter a signal embedded in the mRNA of certain eukaryotic and prokaryotic genes. This signal has a mandatory component, the frameshift motif: it is either a Z_ZZN tetramer or a X_XXZ_ZZN heptamer (where ZZZ and XXX are three identical nucleotides) allowing cognate or near-cognate repairing to the -1 frame of the A site or A and P sites tRNAs. Depending on the signal, the frameshifting frequency can vary over a wide range, from less than 1% to more than 50%. The present study combines experimental and bioinformatics approaches to carry out (i) a systematic analysis of the frameshift propensity of all possible motifs (16 Z_ZZN tetramers and 64 X_XXZ_ZZN heptamers) in Escherichia coli and (ii) the identification of genes potentially using this mode of expression amongst 36 Enterobacteriaceae genomes. While motif efficiency varies widely, a major distinctive rule of bacterial -1 frameshifting is that the most efficient motifs are those allowing cognate re-pairing of the A site tRNA from ZZN to ZZZ. The outcome of the genomic search is a set of 69 gene clusters, 59 of which constitute new candidates for functional utilization of -1 frameshifting.
format Online
Article
Text
id pubmed-4066793
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-40667932014-06-24 Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli Sharma, Virag Prère, Marie-Françoise Canal, Isabelle Firth, Andrew E. Atkins, John F. Baranov, Pavel V. Fayet, Olivier Nucleic Acids Res Molecular Biology Programmed ribosomal -1 frameshifting is a non-standard decoding process occurring when ribosomes encounter a signal embedded in the mRNA of certain eukaryotic and prokaryotic genes. This signal has a mandatory component, the frameshift motif: it is either a Z_ZZN tetramer or a X_XXZ_ZZN heptamer (where ZZZ and XXX are three identical nucleotides) allowing cognate or near-cognate repairing to the -1 frame of the A site or A and P sites tRNAs. Depending on the signal, the frameshifting frequency can vary over a wide range, from less than 1% to more than 50%. The present study combines experimental and bioinformatics approaches to carry out (i) a systematic analysis of the frameshift propensity of all possible motifs (16 Z_ZZN tetramers and 64 X_XXZ_ZZN heptamers) in Escherichia coli and (ii) the identification of genes potentially using this mode of expression amongst 36 Enterobacteriaceae genomes. While motif efficiency varies widely, a major distinctive rule of bacterial -1 frameshifting is that the most efficient motifs are those allowing cognate re-pairing of the A site tRNA from ZZN to ZZZ. The outcome of the genomic search is a set of 69 gene clusters, 59 of which constitute new candidates for functional utilization of -1 frameshifting. Oxford University Press 2014-07-01 2014-05-28 /pmc/articles/PMC4066793/ /pubmed/24875478 http://dx.doi.org/10.1093/nar/gku386 Text en © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Molecular Biology
Sharma, Virag
Prère, Marie-Françoise
Canal, Isabelle
Firth, Andrew E.
Atkins, John F.
Baranov, Pavel V.
Fayet, Olivier
Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli
title Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli
title_full Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli
title_fullStr Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli
title_full_unstemmed Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli
title_short Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli
title_sort analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in escherichia coli
topic Molecular Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066793/
https://www.ncbi.nlm.nih.gov/pubmed/24875478
http://dx.doi.org/10.1093/nar/gku386
work_keys_str_mv AT sharmavirag analysisoftetraandheptanucleotidesmotifspromoting1ribosomalframeshiftinginescherichiacoli
AT preremariefrancoise analysisoftetraandheptanucleotidesmotifspromoting1ribosomalframeshiftinginescherichiacoli
AT canalisabelle analysisoftetraandheptanucleotidesmotifspromoting1ribosomalframeshiftinginescherichiacoli
AT firthandrewe analysisoftetraandheptanucleotidesmotifspromoting1ribosomalframeshiftinginescherichiacoli
AT atkinsjohnf analysisoftetraandheptanucleotidesmotifspromoting1ribosomalframeshiftinginescherichiacoli
AT baranovpavelv analysisoftetraandheptanucleotidesmotifspromoting1ribosomalframeshiftinginescherichiacoli
AT fayetolivier analysisoftetraandheptanucleotidesmotifspromoting1ribosomalframeshiftinginescherichiacoli