Cargando…

Molecular Mechanism of Mg(2+)-dependent gating in CorA

CorA is the major transport system responsible for Mg(2+) uptake in bacteria and can functionally substitute for its homologue Mrs2p in the yeast inner mitochondrial membrane. Although several CorA crystal structures are available, the molecular mechanism of Mg(2+) uptake remains to be established....

Descripción completa

Detalles Bibliográficos
Autores principales: Dalmas, Olivier, Sompornpisut, Pornthep, Bezanilla, Francisco, Perozo, Eduardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066822/
https://www.ncbi.nlm.nih.gov/pubmed/24694723
http://dx.doi.org/10.1038/ncomms4590
Descripción
Sumario:CorA is the major transport system responsible for Mg(2+) uptake in bacteria and can functionally substitute for its homologue Mrs2p in the yeast inner mitochondrial membrane. Although several CorA crystal structures are available, the molecular mechanism of Mg(2+) uptake remains to be established. Here we use EPR spectroscopy, electrophysiology and molecular dynamic simulations to show that CorA is regulated by cytoplasmic Mg(2+) acting as a ligand and elucidate the basic conformational rearrangements responsible for Mg(2+)-dependent gating. Mg(2+) unbinding at the divalent cation sensor triggers a conformational change that leads to the inward motion of the stalk helix, which propagates to the pore forming transmembrane helix TM1. Helical tilting and rotation in TM1 generates an iris-like motion that increases the diameter of the permeation pathway, triggering ion conduction. This work establishes the molecular basis of a Mg(2+)-driven negative feedback loop in CorA as the key physiological event controlling Mg(2+) uptake and homeostasis in prokaryotes.