Cargando…
Spatial–temporal modelling of fMRI data through spatially regularized mixture of hidden process models
Previous work investigated a range of spatio-temporal constraints for fMRI data analysis to provide robust detection of neural activation. We present a mixture-based method for the spatio-temporal modelling of fMRI data. This approach assumes that fMRI time series are generated by a probabilistic su...
Autores principales: | Shen, Yuan, Mayhew, Stephen D., Kourtzi, Zoe, Tiňo, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066951/ https://www.ncbi.nlm.nih.gov/pubmed/24041873 http://dx.doi.org/10.1016/j.neuroimage.2013.09.003 |
Ejemplares similares
-
Spatial and temporal features of superordinate semantic processing studied with fMRI and EEG
por: Costanzo, Michelle E., et al.
Publicado: (2013) -
Temporally and Spatially Constrained ICA of fMRI Data Analysis
por: Wang, Zhi, et al.
Publicado: (2014) -
fMRI at High Spatial Resolution: Implications for BOLD-Models
por: Goense, Jozien, et al.
Publicado: (2016) -
Multivariate spatial feature selection in fMRI
por: Jolly, E, et al.
Publicado: (2021) -
Spatial ICA reveals functional activity hidden from traditional fMRI GLM-based analyses
por: Xu, Jiansong, et al.
Publicado: (2013)