Cargando…
Forced monogamy in a multiply mating species does not impede colonisation success
BACKGROUND: The guppy (Poecilia reticulata) is a successful invasive species. It is also a species that mates multiply; previous studies have demonstrated that this strategy carries fitness benefits. Guppies are routinely introduced to tanks and troughs in regions outside their native range for mosq...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067062/ https://www.ncbi.nlm.nih.gov/pubmed/24925225 http://dx.doi.org/10.1186/1472-6785-14-18 |
Sumario: | BACKGROUND: The guppy (Poecilia reticulata) is a successful invasive species. It is also a species that mates multiply; previous studies have demonstrated that this strategy carries fitness benefits. Guppies are routinely introduced to tanks and troughs in regions outside their native range for mosquito-control purposes, and often spread beyond these initial confines into natural water bodies with negative ecological consequences. Here, using a mesocosm set up that resembles the containers into which single guppies are typically introduced for mosquito control, we ask whether singly-mated females are at a disadvantage, relative to multiply-mated females, when it comes to founding a population. Treatments were monitored for one year. RESULTS: A key finding was that mating history did not predict establishment success, which was 88% in both treatments. Furthermore, analysis of behavioural traits revealed that the descendants of singly-mated females retained antipredator behaviours, and that adult males showed no decrease in courtship vigour. Also, we detected no differences in behavioural variability between treatments. CONCLUSIONS: These results suggest that even when denied the option of multiple mating, singly-mated female guppies can produce viable populations, at least at the founder stage. This may prove to be a critical advantage in typical introduction scenarios where few individuals are released into enclosed water bodies before finding their way into natural ecosystems. |
---|