Cargando…

Transient viscoelasticity study of tobacco mosaic virus/Ba(2+) superlattice

Recently, we reported a new method to synthesize the rod-like tobacco mosaic virus (TMV) superlattice. To explore its potentials in nanolattice templating and tissue scaffolding, this work focused the viscoelasticity of the superlattice with a novel transient method via atomic force microscopy (AFM)...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Haoran, Wang, Xinnan, Li, Tao, Lee, Byeongdu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067107/
https://www.ncbi.nlm.nih.gov/pubmed/24994956
http://dx.doi.org/10.1186/1556-276X-9-300
Descripción
Sumario:Recently, we reported a new method to synthesize the rod-like tobacco mosaic virus (TMV) superlattice. To explore its potentials in nanolattice templating and tissue scaffolding, this work focused the viscoelasticity of the superlattice with a novel transient method via atomic force microscopy (AFM). For measuring viscoelasticity, in contrast to previous methods that assessed the oscillating response, the method proposed in this work enabled us to determine the transient response (creep or relaxation) of micro/nanobiomaterials. The mathematical model and numerical process were elaborated to extract the viscoelastic properties from the indentation data. The adhesion between the AFM tip and the sample was included in the indentation model. Through the functional equation method, the elastic solution for the indentation model was extended to the viscoelastic solution so that the time dependent force vs. displacement relation could be attained. To simplify the solving of the differential equation, a standard solid model was modified to obtain the elastic and viscoelastic components of the sample. The viscoelastic responses with different mechanical stimuli and the dynamic properties were also investigated.