Cargando…

Bayesian Weighting of Statistical Potentials in NMR Structure Calculation

The use of statistical potentials in NMR structure calculation improves the accuracy of the final structure but also raises issues of double counting and possible bias. Because statistical potentials are averaged over a large set of structures, they may not reflect the preferences of a particular st...

Descripción completa

Detalles Bibliográficos
Autores principales: Mechelke, Martin, Habeck, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067304/
https://www.ncbi.nlm.nih.gov/pubmed/24956116
http://dx.doi.org/10.1371/journal.pone.0100197
Descripción
Sumario:The use of statistical potentials in NMR structure calculation improves the accuracy of the final structure but also raises issues of double counting and possible bias. Because statistical potentials are averaged over a large set of structures, they may not reflect the preferences of a particular structure or data set. We propose a Bayesian method to incorporate a knowledge-based backbone dihedral angle potential into an NMR structure calculation. To avoid bias exerted through the backbone potential, we adjust its weight by inferring it from the experimental data. We demonstrate that an optimally weighted potential leads to an improvement in the accuracy and quality of the final structure, especially with sparse and noisy data. Our findings suggest that no universally optimal weight exists, and that the weight should be determined based on the experimental data. Other knowledge-based potentials can be incorporated using the same approach.