Cargando…
Delineation of Concentration Ranges and Longitudinal Changes of Human Plasma Protein Variants
Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and underst...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067327/ https://www.ncbi.nlm.nih.gov/pubmed/24955979 http://dx.doi.org/10.1371/journal.pone.0100713 |
_version_ | 1782322275334225920 |
---|---|
author | Trenchevska, Olgica Phillips, David A. Nelson, Randall W. Nedelkov, Dobrin |
author_facet | Trenchevska, Olgica Phillips, David A. Nelson, Randall W. Nedelkov, Dobrin |
author_sort | Trenchevska, Olgica |
collection | PubMed |
description | Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes. |
format | Online Article Text |
id | pubmed-4067327 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40673272014-06-25 Delineation of Concentration Ranges and Longitudinal Changes of Human Plasma Protein Variants Trenchevska, Olgica Phillips, David A. Nelson, Randall W. Nedelkov, Dobrin PLoS One Research Article Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes. Public Library of Science 2014-06-23 /pmc/articles/PMC4067327/ /pubmed/24955979 http://dx.doi.org/10.1371/journal.pone.0100713 Text en © 2014 Trenchevska et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Trenchevska, Olgica Phillips, David A. Nelson, Randall W. Nedelkov, Dobrin Delineation of Concentration Ranges and Longitudinal Changes of Human Plasma Protein Variants |
title | Delineation of Concentration Ranges and Longitudinal Changes of Human Plasma Protein Variants |
title_full | Delineation of Concentration Ranges and Longitudinal Changes of Human Plasma Protein Variants |
title_fullStr | Delineation of Concentration Ranges and Longitudinal Changes of Human Plasma Protein Variants |
title_full_unstemmed | Delineation of Concentration Ranges and Longitudinal Changes of Human Plasma Protein Variants |
title_short | Delineation of Concentration Ranges and Longitudinal Changes of Human Plasma Protein Variants |
title_sort | delineation of concentration ranges and longitudinal changes of human plasma protein variants |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067327/ https://www.ncbi.nlm.nih.gov/pubmed/24955979 http://dx.doi.org/10.1371/journal.pone.0100713 |
work_keys_str_mv | AT trenchevskaolgica delineationofconcentrationrangesandlongitudinalchangesofhumanplasmaproteinvariants AT phillipsdavida delineationofconcentrationrangesandlongitudinalchangesofhumanplasmaproteinvariants AT nelsonrandallw delineationofconcentrationrangesandlongitudinalchangesofhumanplasmaproteinvariants AT nedelkovdobrin delineationofconcentrationrangesandlongitudinalchangesofhumanplasmaproteinvariants |