Cargando…
Application of Reinforcement Learning in Cognitive Radio Networks: Models and Algorithms
Cognitive radio (CR) enables unlicensed users to exploit the underutilized spectrum in licensed spectrum whilst minimizing interference to licensed users. Reinforcement learning (RL), which is an artificial intelligence approach, has been applied to enable each unlicensed user to observe and carry o...
Autores principales: | Yau, Kok-Lim Alvin, Poh, Geong-Sen, Chien, Su Fong, Al-Rawi, Hasan A. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068054/ https://www.ncbi.nlm.nih.gov/pubmed/24995352 http://dx.doi.org/10.1155/2014/209810 |
Ejemplares similares
-
Reinforcement Learning for Routing in Cognitive Radio Ad Hoc Networks
por: Al-Rawi, Hasan A. A., et al.
Publicado: (2014) -
An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks
por: Mustapha, Ibrahim, et al.
Publicado: (2015) -
Distributed Spectrum Management in Cognitive Radio Networks by Consensus-Based Reinforcement Learning†
por: Dašić, Dejan, et al.
Publicado: (2021) -
A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks
por: Lin, Yun, et al.
Publicado: (2016) -
Deep Reinforcement Learning for Physical Layer Security Enhancement in Energy Harvesting Based Cognitive Radio Networks
por: Lin, Ruiquan, et al.
Publicado: (2023)