Cargando…
A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series
The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies h...
Autores principales: | Patel, Ameera X., Kundu, Prantik, Rubinov, Mikail, Jones, P. Simon, Vértes, Petra E., Ersche, Karen D., Suckling, John, Bullmore, Edward T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068300/ https://www.ncbi.nlm.nih.gov/pubmed/24657353 http://dx.doi.org/10.1016/j.neuroimage.2014.03.012 |
Ejemplares similares
-
Temporal interpolation alters motion in fMRI scans: Magnitudes and consequences for artifact detection
por: Power, Jonathan D., et al.
Publicado: (2017) -
A wavelet-based estimator of the degrees of freedom in denoised fMRI time series for probabilistic testing of functional connectivity and brain graphs
por: Patel, Ameera X., et al.
Publicado: (2016) -
A Unifying Framework for Measuring Weighted Rich Clubs
por: Alstott, Jeff, et al.
Publicado: (2014) -
Filtering respiratory motion artifact from resting state fMRI data in infant and toddler populations
por: Kaplan, Sydney, et al.
Publicado: (2022) -
A performance evaluation of despiking algorithms for eddy covariance data
por: Vitale, Domenico
Publicado: (2021)