Cargando…
Multivariate decoding of brain images using ordinal regression()
Neuroimaging data are increasingly being used to predict potential outcomes or groupings, such as clinical severity, drug dose response, and transitional illness states. In these examples, the variable (target) we want to predict is ordinal in nature. Conventional classification schemes assume that...
Autores principales: | Doyle, O.M., Ashburner, J., Zelaya, F.O., Williams, S.C.R., Mehta, M.A., Marquand, A.F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068378/ https://www.ncbi.nlm.nih.gov/pubmed/23684876 http://dx.doi.org/10.1016/j.neuroimage.2013.05.036 |
Ejemplares similares
-
Sparse Ordinal Logistic Regression and Its Application to Brain Decoding
por: Satake, Emi, et al.
Publicado: (2018) -
Predicting Progression of Alzheimer’s Disease Using Ordinal Regression
por: Doyle, Orla M., et al.
Publicado: (2014) -
Estimating multivariate similarity between neuroimaging datasets with sparse canonical correlation analysis: an application to perfusion imaging
por: Rosa, Maria J., et al.
Publicado: (2015) -
Multivariate decoding of cerebral blood flow measures in a clinical model of on‐going postsurgical pain
por: O'Muircheartaigh, Jonathan, et al.
Publicado: (2014) -
Bayesian multi-task learning for decoding multi-subject neuroimaging data
por: Marquand, Andre F., et al.
Publicado: (2014)