Cargando…

Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila

BACKGROUND: The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understoo...

Descripción completa

Detalles Bibliográficos
Autores principales: Hollfelder, Dominik, Frasch, Manfred, Reim, Ingolf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068974/
https://www.ncbi.nlm.nih.gov/pubmed/24935095
http://dx.doi.org/10.1186/1471-213X-14-26
_version_ 1782322482509774848
author Hollfelder, Dominik
Frasch, Manfred
Reim, Ingolf
author_facet Hollfelder, Dominik
Frasch, Manfred
Reim, Ingolf
author_sort Hollfelder, Dominik
collection PubMed
description BACKGROUND: The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. RESULTS: Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. CONCLUSIONS: Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational analysis suggests that the β6/β3/β8 interface of the laminin β LN domain is highly critical for formation of contiguous cardiac ECM layers. Certain mutations in the collagen IV triple helix-forming domain may exert a semi-dominant effect leading to an overall weakening of ECM structures as well as intracellular accumulation of collagen and other molecules, thus paralleling observations made in other organisms and in connection with collagen-related diseases.
format Online
Article
Text
id pubmed-4068974
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-40689742014-06-25 Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila Hollfelder, Dominik Frasch, Manfred Reim, Ingolf BMC Dev Biol Research Article BACKGROUND: The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. RESULTS: Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. CONCLUSIONS: Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational analysis suggests that the β6/β3/β8 interface of the laminin β LN domain is highly critical for formation of contiguous cardiac ECM layers. Certain mutations in the collagen IV triple helix-forming domain may exert a semi-dominant effect leading to an overall weakening of ECM structures as well as intracellular accumulation of collagen and other molecules, thus paralleling observations made in other organisms and in connection with collagen-related diseases. BioMed Central 2014-06-17 /pmc/articles/PMC4068974/ /pubmed/24935095 http://dx.doi.org/10.1186/1471-213X-14-26 Text en Copyright © 2014 Hollfelder et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Hollfelder, Dominik
Frasch, Manfred
Reim, Ingolf
Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila
title Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila
title_full Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila
title_fullStr Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila
title_full_unstemmed Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila
title_short Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila
title_sort distinct functions of the laminin β ln domain and collagen iv during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by ems mutagenesis in drosophila
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068974/
https://www.ncbi.nlm.nih.gov/pubmed/24935095
http://dx.doi.org/10.1186/1471-213X-14-26
work_keys_str_mv AT hollfelderdominik distinctfunctionsofthelamininblndomainandcollagenivduringcardiacextracellularmatrixformationandstabilizationofalarymuscleattachmentsrevealedbyemsmutagenesisindrosophila
AT fraschmanfred distinctfunctionsofthelamininblndomainandcollagenivduringcardiacextracellularmatrixformationandstabilizationofalarymuscleattachmentsrevealedbyemsmutagenesisindrosophila
AT reimingolf distinctfunctionsofthelamininblndomainandcollagenivduringcardiacextracellularmatrixformationandstabilizationofalarymuscleattachmentsrevealedbyemsmutagenesisindrosophila