Cargando…
Advances in repairing the degenerate retina by rod photoreceptor transplantation()
Despite very different aetiologies, age-related macular degeneration (AMD) and most inherited retinal disorders culminate in the same final common pathway, loss of the light-sensitive photoreceptors. There are few clinical treatments and none can reverse the loss of vision. Photoreceptor replacement...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070022/ https://www.ncbi.nlm.nih.gov/pubmed/24412415 http://dx.doi.org/10.1016/j.biotechadv.2014.01.001 |
Sumario: | Despite very different aetiologies, age-related macular degeneration (AMD) and most inherited retinal disorders culminate in the same final common pathway, loss of the light-sensitive photoreceptors. There are few clinical treatments and none can reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. The past decade has seen a number of landmark achievements in this field, which together provide strong justification for continuing investigation into photoreceptor replacement strategies. These include proof of principle for restoring vision by rod-photoreceptor transplantation in mice with congenital stationary night blindness and advances in stem cell biology, which have led to the generation of complete optic structures in vitro from embryonic stem cells. The latter represents enormous potential for generating suitable and renewable donor cells with which to achieve the former. However, there are still challenges presented by the degenerating recipient retinal environment that must be addressed as we move to translating these technologies towards clinical application. |
---|