Cargando…

Geometry of Quantum Computation with Qudits

The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially cu...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Ming-Xing, Chen, Xiu-Bo, Yang, Yi-Xian, Wang, Xiaojun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070285/
https://www.ncbi.nlm.nih.gov/pubmed/24509710
http://dx.doi.org/10.1038/srep04044
_version_ 1782322668332122112
author Luo, Ming-Xing
Chen, Xiu-Bo
Yang, Yi-Xian
Wang, Xiaojun
author_facet Luo, Ming-Xing
Chen, Xiu-Bo
Yang, Yi-Xian
Wang, Xiaojun
author_sort Luo, Ming-Xing
collection PubMed
description The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially curved parametrization of SU(d(n)). And the quantum circuit complexity is explicitly dependent of controllable approximation error bound.
format Online
Article
Text
id pubmed-4070285
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-40702852014-08-27 Geometry of Quantum Computation with Qudits Luo, Ming-Xing Chen, Xiu-Bo Yang, Yi-Xian Wang, Xiaojun Sci Rep Article The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially curved parametrization of SU(d(n)). And the quantum circuit complexity is explicitly dependent of controllable approximation error bound. Nature Publishing Group 2014-02-10 /pmc/articles/PMC4070285/ /pubmed/24509710 http://dx.doi.org/10.1038/srep04044 Text en Copyright © 2014, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Luo, Ming-Xing
Chen, Xiu-Bo
Yang, Yi-Xian
Wang, Xiaojun
Geometry of Quantum Computation with Qudits
title Geometry of Quantum Computation with Qudits
title_full Geometry of Quantum Computation with Qudits
title_fullStr Geometry of Quantum Computation with Qudits
title_full_unstemmed Geometry of Quantum Computation with Qudits
title_short Geometry of Quantum Computation with Qudits
title_sort geometry of quantum computation with qudits
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070285/
https://www.ncbi.nlm.nih.gov/pubmed/24509710
http://dx.doi.org/10.1038/srep04044
work_keys_str_mv AT luomingxing geometryofquantumcomputationwithqudits
AT chenxiubo geometryofquantumcomputationwithqudits
AT yangyixian geometryofquantumcomputationwithqudits
AT wangxiaojun geometryofquantumcomputationwithqudits