Cargando…
REGNET: mining context-specific human transcription networks using composite genomic information
BACKGROUND: Genome-wide expression profiles reflect the transcriptional networks specific to the given cell context. However, most statistical models try to estimate the average connectivity of the networks from a collection of gene expression data, and are unable to characterize the context-specifi...
Autores principales: | Chi, Sang-Mun, Seo, Young-Kyo, Park, Young-Kyu, Yoon, Sora, Park, Chan Young, Kim, Yong Sung, Kim, Seon-Young, Nam, Dougu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070555/ https://www.ncbi.nlm.nih.gov/pubmed/24912499 http://dx.doi.org/10.1186/1471-2164-15-450 |
Ejemplares similares
-
GScluster: network-weighted gene-set clustering analysis
por: Yoon, Sora, et al.
Publicado: (2019) -
Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates
por: Yoon, Sora, et al.
Publicado: (2016) -
MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering
por: Kim, Eun-Youn, et al.
Publicado: (2009) -
Biclustering analysis of transcriptome big data identifies condition-specific microRNA targets
por: Yoon, Sora, et al.
Publicado: (2019) -
ADGO 2.0: interpreting microarray data and list of genes using composite annotations
por: Chi, Sang-Mun, et al.
Publicado: (2011)