Cargando…

High Interaction Variability of the Bivalve-Killing Dinoflagellate Heterocapsa circularisquama Strains and Their Single-Stranded RNA Virus HcRNAV Isolates

HcRNAV is a single-stranded RNA (ssRNA) virus that specifically infects the bivalve-killing dinoflagellate, Heterocapsa circularisquama. HcRNAV strains are grouped into 2 types (UA and CY), based on intra-species host specificity and the amino acid sequence of the major capsid protein (MCP). In the...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakayama, Natsuko, Fujimoto, Akihiro, Kawami, Hisae, Tomaru, Yuji, Hata, Naotsugu, Nagasaki, Keizo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society of Microbial Ecology/The Japanese Society of Soil Microbiology 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070693/
https://www.ncbi.nlm.nih.gov/pubmed/23268792
http://dx.doi.org/10.1264/jsme2.ME12106
Descripción
Sumario:HcRNAV is a single-stranded RNA (ssRNA) virus that specifically infects the bivalve-killing dinoflagellate, Heterocapsa circularisquama. HcRNAV strains are grouped into 2 types (UA and CY), based on intra-species host specificity and the amino acid sequence of the major capsid protein (MCP). In the present study, we report the isolation of novel HcRNAV clones (n=51) lytic to the H. circularisquama strains, HU9433-P, HCLG-1, 05HC05 and 05HC06. HcRNAV34, HcRNAV109, HcRNAV641, and HcRNAV659, which displayed lytic activity against the strains, HU9433-P, HCLG-1, 05HC05, and 05HC06, respectively, were selected as typical virus clones and were intensively examined. The infection intensity of each host-virus combination was analyzed by examining the algicidal activity, detecting the intracellular replication of the viral RNA as well as the appearance of host cells with a morphologically abnormal nucleus post-infection. Interestingly, the strains, 05HC05 and 05HC06, were markedly sensitive to HcRNAV641 and HcRNAV659, respectively. Tertiary structural modeling predicted 4 unique amino acid (aa) substitutions in HcRNAV659-MCP to be exposed to an ambient water environment, which contributed towards determining its infection specificity. Neighbor-joining analysis of MCP aa sequences from HcRNAV clones revealed 3 clades, namely, the CY type and the UA1 and UA2 subtypes. The HcRNAV clones lytic to HCLG-1 (ex. HcRNAV109), HU9433-P and 05HC05 (ex. HcRNAV34), and 05HC06 (ex. HcRNAV659) were categorized into CY type, UA1 and UA2 subtypes, respectively. The present study highlights the complexity of the H. circularisquama-HcRNAV host-virus system, i.e., clonal variation, microbial control, and ecology in a natural algal population.