Cargando…
Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater
This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) bio...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society of Microbial Ecology/The Japanese Society of Soil Microbiology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070696/ https://www.ncbi.nlm.nih.gov/pubmed/23124766 http://dx.doi.org/10.1264/jsme2.ME12095 |
_version_ | 1782322730134142976 |
---|---|
author | Ling, Fangqiong Liu, Wen-Tso |
author_facet | Ling, Fangqiong Liu, Wen-Tso |
author_sort | Ling, Fangqiong |
collection | PubMed |
description | This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, the biofilms were subjected to chloramination for 8 more weeks at concentrations of 7.5±1.4 to 9.1±0.4 mg Cl(2) L(−1). Control reactors received no disinfection during the development of biofilms. Confocal laser scanning microscopy and image analysis indicated that chloramination could lead to 81.4–83.5% and 86.3–95.6% reduction in biofilm biomass and thickness, respectively, but could not eliminate biofilm growth. 16S rRNA gene terminal restriction fragment length polymorphism analysis indicated that microbial community structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant populations, whereas natural development leads to the selection of members of Nitrospira and Bacteroidetes as dominant biofilm populations. Overall, chloramination treatment could alter the growth of multi-species biofilms on the PVC surface, shape the biofilm architecture, and select a certain microbial community that can survive or proliferate under chloramination. |
format | Online Article Text |
id | pubmed-4070696 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Japanese Society of Microbial Ecology/The Japanese Society of Soil Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-40706962014-07-24 Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater Ling, Fangqiong Liu, Wen-Tso Microbes Environ Articles This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, the biofilms were subjected to chloramination for 8 more weeks at concentrations of 7.5±1.4 to 9.1±0.4 mg Cl(2) L(−1). Control reactors received no disinfection during the development of biofilms. Confocal laser scanning microscopy and image analysis indicated that chloramination could lead to 81.4–83.5% and 86.3–95.6% reduction in biofilm biomass and thickness, respectively, but could not eliminate biofilm growth. 16S rRNA gene terminal restriction fragment length polymorphism analysis indicated that microbial community structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant populations, whereas natural development leads to the selection of members of Nitrospira and Bacteroidetes as dominant biofilm populations. Overall, chloramination treatment could alter the growth of multi-species biofilms on the PVC surface, shape the biofilm architecture, and select a certain microbial community that can survive or proliferate under chloramination. Japanese Society of Microbial Ecology/The Japanese Society of Soil Microbiology 2013-03 2012-10-31 /pmc/articles/PMC4070696/ /pubmed/23124766 http://dx.doi.org/10.1264/jsme2.ME12095 Text en Copyright © 2013 by the Japanese Society of Microbial Ecology / the Japanese Society of Soil Microbiology http://creativecommons.org/licenses/by/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Ling, Fangqiong Liu, Wen-Tso Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater |
title | Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater |
title_full | Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater |
title_fullStr | Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater |
title_full_unstemmed | Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater |
title_short | Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater |
title_sort | impact of chloramination on the development of laboratory-grown biofilms fed with filter-pretreated groundwater |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070696/ https://www.ncbi.nlm.nih.gov/pubmed/23124766 http://dx.doi.org/10.1264/jsme2.ME12095 |
work_keys_str_mv | AT lingfangqiong impactofchloraminationonthedevelopmentoflaboratorygrownbiofilmsfedwithfilterpretreatedgroundwater AT liuwentso impactofchloraminationonthedevelopmentoflaboratorygrownbiofilmsfedwithfilterpretreatedgroundwater |