Cargando…

Bacterial and Archaeal Diversity in an Iron-Rich Coastal Hydrothermal Field in Yamagawa, Kagoshima, Japan

Physicochemical characteristics and archaeal and bacterial community structures in an iron-rich coastal hydrothermal field, where the temperature of the most active hot spot reaches above 100°C, were investigated to obtain fundamental information on microbes inhabiting a coastal hydrothermal field....

Descripción completa

Detalles Bibliográficos
Autores principales: Kawaichi, Satoshi, Ito, Norihiro, Yoshida, Takashi, Sako, Yoshihiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society of Microbial Ecology/The Japanese Society of Soil Microbiology 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070711/
https://www.ncbi.nlm.nih.gov/pubmed/24256999
http://dx.doi.org/10.1264/jsme2.ME13048
Descripción
Sumario:Physicochemical characteristics and archaeal and bacterial community structures in an iron-rich coastal hydrothermal field, where the temperature of the most active hot spot reaches above 100°C, were investigated to obtain fundamental information on microbes inhabiting a coastal hydrothermal field. The environmental settings of the coastal hydrothermal field were similar in some degree to those of deep-sea hydrothermal environments because of its emission of H(2), CO(2), and sulfide from the bottom of the hot spot. The results of clone analyses based on the 16S rRNA gene led us to speculate the presence of a chemo-synthetic microbial ecosystem, where chemolithoautotrophic thermophiles, primarily the bacterial order Aquificales, function as primary producers using H(2) or sulfur compounds as their energy source and CO(2) as their carbon source, and the organic compounds synthesized by them support the growth of chemoheterotrophic thermophiles, such as members of the order Thermales and the family Desulfurococcaceae. In addition, the dominance of members of the bacterial genus Herbaspirillum in the high temperature bottom layer led us to speculate the temporal formation of mesophilic zones where they can also function as primary producing or nitrogen-fixing bacteria.