Cargando…

Rostro-Caudal Inhibition of Hindlimb Movements in the Spinal Cord of Mice

Inhibitory neurons in the adult mammalian spinal cord are known to locally modulate afferent feedback - from muscle proprioceptors and from skin receptors - to pattern motor activity for locomotion and postural control. Here, using optogenetic tools, we explored how the same population of inhibitory...

Descripción completa

Detalles Bibliográficos
Autores principales: Caggiano, Vittorio, Sur, Mirganka, Bizzi, Emilio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071039/
https://www.ncbi.nlm.nih.gov/pubmed/24963653
http://dx.doi.org/10.1371/journal.pone.0100865
Descripción
Sumario:Inhibitory neurons in the adult mammalian spinal cord are known to locally modulate afferent feedback - from muscle proprioceptors and from skin receptors - to pattern motor activity for locomotion and postural control. Here, using optogenetic tools, we explored how the same population of inhibitory interneurons globally affects hindlimb movements in the spinal cord of both anesthetized and freely moving mice. Activation of inhibitory interneurons up to the middle/lower spinal cord i.e. T8–T9, were able to completely and globally suppress all ipsilateral hindlimb movements. Furthermore, the same population of interneurons - which inhibited movements - did not significantly change the sensory and proprioceptive information from the affected limbs to the cortex. These results suggest a rostro-caudal organization of inhibition in the spinal cord motor output without modulation of ascending sensory pathways.