Cargando…
Protein fold recognition using geometric kernel data fusion
Motivation: Various approaches based on features extracted from protein sequences and often machine learning methods have been used in the prediction of protein folds. Finding an efficient technique for integrating these different protein features has received increasing attention. In particular, ke...
Autores principales: | Zakeri, Pooya, Jeuris, Ben, Vandebril, Raf, Moreau, Yves |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071197/ https://www.ncbi.nlm.nih.gov/pubmed/24590441 http://dx.doi.org/10.1093/bioinformatics/btu118 |
Ejemplares similares
-
A weighted string kernel for protein fold recognition
por: Nojoomi, Saghi, et al.
Publicado: (2017) -
String kernels for protein sequence comparisons: improved fold recognition
por: Nojoomi, Saghi, et al.
Publicado: (2017) -
L(2)-norm multiple kernel learning and its application to biomedical data fusion
por: Yu, Shi, et al.
Publicado: (2010) -
Geometric analysis of the Bergman kernel and metric
por: Krantz, Steven G
Publicado: (2013) -
Mapping the Geometric Evolution of Protein Folding Motor
por: Jerath, Gaurav, et al.
Publicado: (2016)