Cargando…
Probabilistic PCA of censored data: accounting for uncertainties in the visualization of high-throughput single-cell qPCR data
Motivation: High-throughput single-cell quantitative real-time polymerase chain reaction (qPCR) is a promising technique allowing for new insights in complex cellular processes. However, the PCR reaction can be detected only up to a certain detection limit, whereas failed reactions could be due to l...
Autores principales: | Buettner, Florian, Moignard, Victoria, Göttgens, Berthold, Theis, Fabian J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071202/ https://www.ncbi.nlm.nih.gov/pubmed/24618470 http://dx.doi.org/10.1093/bioinformatics/btu134 |
Ejemplares similares
-
A unified censored normal regression model for qPCR differential gene expression analysis
por: Pipelers, Peter, et al.
Publicado: (2017) -
On non-detects in qPCR data
por: McCall, Matthew N., et al.
Publicado: (2014) -
Scalable probabilistic PCA for large-scale genetic variation data
por: Agrawal, Aman, et al.
Publicado: (2020) -
Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data
por: Ezer, Daphne, et al.
Publicado: (2016) -
Characterisation of transcriptional networks in blood stem and progenitor cells using high-throughput single cell gene expression analysis
por: Moignard, Victoria, et al.
Publicado: (2013)