Cargando…
Efficacy of antibacterial-loaded coating in an in vivo model of acutely highly contaminated implant
PURPOSE: The purpose of this study was to test the ability of DAC®, a fast resorbable, antibacterial-loaded hydrogel coating, to prevent acute bacterial colonization in an in vivo model of an intra-operatively highly contaminated implant. METHODS: A histocompatibility study was performed in 10 adult...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071480/ https://www.ncbi.nlm.nih.gov/pubmed/24363076 http://dx.doi.org/10.1007/s00264-013-2237-2 |
Sumario: | PURPOSE: The purpose of this study was to test the ability of DAC®, a fast resorbable, antibacterial-loaded hydrogel coating, to prevent acute bacterial colonization in an in vivo model of an intra-operatively highly contaminated implant. METHODS: A histocompatibility study was performed in 10 adult New Zealand rabbits. Then, methicillin-resistant Staph. aureus were inoculated in the femur of 30 adult New Zealand rabbits at the time of intra-medullary nailing; vancomycin-loaded DAC® coated nails were compared to controls regarding local and systemic infection development. RESULTS: Histocompatibility study showed no detrimental effect of DAC® hydrogel on bone tissue after 12 weeks from implant. After seven days from implant, none of the rabbits receiving vancomycin-loaded DAC® nail showed positive blood cultures, compared to all the controls; vancomycin-loaded DAC® coating was associated with local bacterial load reduction ranging from 72 to 99 %, compared to controls. CONCLUSIONS: Vancomycin-loaded DAC® coating is able to significantly reduce bacterial colonization in an animal model of an intra-operatively highly contaminated implant, without local or general side effect. |
---|