Cargando…
Influence of Heating and Cyclic Tension on the Induction of Heat Shock Proteins and Bone-Related Proteins by MC3T3-E1 Cells
Stress conditioning (e.g., thermal, shear, and tensile stress) of bone cells has been shown to enhance healing. However, prior studies have not investigated whether combined stress could synergistically promote bone regeneration. This study explored the impact of combined thermal and tensile stress...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071810/ https://www.ncbi.nlm.nih.gov/pubmed/25013774 http://dx.doi.org/10.1155/2014/354260 |
Sumario: | Stress conditioning (e.g., thermal, shear, and tensile stress) of bone cells has been shown to enhance healing. However, prior studies have not investigated whether combined stress could synergistically promote bone regeneration. This study explored the impact of combined thermal and tensile stress on the induction of heat shock proteins (HSPs) and bone-related proteins by a murine preosteoblast cell line (MC3T3-E1). Cells were exposed to thermal stress using a water bath (44°C for 4 or 8 minutes) with postheating incubation (37°C for 4 hours) followed by exposure to cyclic strain (equibiaxial 3%, 0.2 Hz, cycle of 10-second tensile stress followed by 10-second rest). Combined thermal stress and tensile stress induced mRNA expression of HSP27 (1.41 relative fold induction (RFI) compared to sham-treated control), HSP70 (5.55 RFI), and osteopontin (1.44 RFI) but suppressed matrix metalloproteinase-9 (0.6 RFI) compared to the control. Combined thermal and tensile stress increased vascular endothelial growth factor (VEGF) secretion into the culture supernatant (1.54-fold increase compared to the control). Therefore, combined thermal and mechanical stress preconditioning can enhance HSP induction and influence protein expression important for bone tissue healing. |
---|