Cargando…
Preserving subject variability in group fMRI analysis: performance evaluation of GICA vs. IVA
Independent component analysis (ICA) is a widely applied technique to derive functionally connected brain networks from fMRI data. Group ICA (GICA) and Independent Vector Analysis (IVA) are extensions of ICA that enable users to perform group fMRI analyses; however a full comparison of the performan...
Autores principales: | Michael, Andrew M., Anderson, Mathew, Miller, Robyn L., Adalı, Tülay, Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071815/ https://www.ncbi.nlm.nih.gov/pubmed/25018704 http://dx.doi.org/10.3389/fnsys.2014.00106 |
Ejemplares similares
-
Comparison of IVA and GIG-ICA in Brain Functional Network Estimation Using fMRI Data
por: Du, Yuhui, et al.
Publicado: (2017) -
Resting-State fMRI Dynamics and Null Models: Perspectives, Sampling Variability, and Simulations
por: Miller, Robyn L., et al.
Publicado: (2018) -
Identification of Homogeneous Subgroups from Resting-State fMRI Data
por: Yang, Hanlu, et al.
Publicado: (2023) -
Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis
por: Li, Yi-Ou, et al.
Publicado: (2011) -
A Scalable Approach to Independent Vector Analysis by Shared Subspace Separation for Multi-Subject fMRI Analysis
por: Sun, Mingyu, et al.
Publicado: (2023)