Cargando…
Privacy Preserving RBF Kernel Support Vector Machine
Data sharing is challenging but important for healthcare research. Methods for privacy-preserving data dissemination based on the rigorous differential privacy standard have been developed but they did not consider the characteristics of biomedical data and make full use of the available information...
Autores principales: | Li, Haoran, Xiong, Li, Ohno-Machado, Lucila, Jiang, Xiaoqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071990/ https://www.ncbi.nlm.nih.gov/pubmed/25013805 http://dx.doi.org/10.1155/2014/827371 |
Ejemplares similares
-
A community assessment of privacy preserving techniques for human genomes
por: Jiang, Xiaoqian, et al.
Publicado: (2014) -
Doubly Optimized Calibrated Support Vector Machine (DOC-SVM): An Algorithm for Joint Optimization of Discrimination and Calibration
por: Jiang, Xiaoqian, et al.
Publicado: (2012) -
DPSynthesizer: Differentially Private Data Synthesizer for Privacy Preserving Data Sharing
por: Li, Haoran, et al.
Publicado: (2014) -
Ranking Support Vector Machine with Kernel Approximation
por: Chen, Kai, et al.
Publicado: (2017) -
Integrated neural network model with pre-RBF kernels
por: Wen, Hui, et al.
Publicado: (2021)