Cargando…

Targeting endothelin receptors A and B attenuates the inflammatory response and improves locomotor function following spinal cord injury in mice

After spinal cord injury (SCI), the disruption of blood-spinal cord barrier by activation of the endothelin (ET) system is a critical event leading to leukocyte infiltration, inflammatory response and oxidative stress, contributing to neurological disability. In the present study, we showed that blo...

Descripción completa

Detalles Bibliográficos
Autores principales: GUO, JIAN, LI, YIQIAO, HE, ZHENNIAN, ZHANG, BIN, LI, YONGHUAN, HU, JIANGHUA, HAN, MINGYUAN, XU, YUANLIN, LI, YONGFU, GU, JIE, DAI, BO, CHEN, ZHONG
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072339/
https://www.ncbi.nlm.nih.gov/pubmed/24756152
http://dx.doi.org/10.3892/ijmm.2014.1751
Descripción
Sumario:After spinal cord injury (SCI), the disruption of blood-spinal cord barrier by activation of the endothelin (ET) system is a critical event leading to leukocyte infiltration, inflammatory response and oxidative stress, contributing to neurological disability. In the present study, we showed that blockade of ET receptor A (ETAR) and/or ET receptor B (ETBR) prevented early inflammatory responses directly via the inhibition of neutrophil and monocyte diapedesis and inflammatory mediator production following traumatic SCI in mice. Long-term neurological improvement, based on a series of tests of locomotor performance, occurred only in the spinal cord-injured mice following blockade of ETAR and ETBR. We also examined the post-traumatic changes of the microenvironment within the injured spinal cord of mice following blockade of ET receptors. Oxidative stress reflects an imbalance between malondialdehyde and superoxide dismutase in spinal cord-injured mice treated with vehicle, whereas blockade of ETAR and ETBR reversed the oxidation state imbalance. In addition, hemeoxygenase-1, a protective protease involved in early SCI, was increased in spinal cord-injured mice following the blockade of ETAR and ETBR, or only ETBR. Matrix metalloproteinase-9, a tissue-destructive protease involved in early damage, was decreased in the injured spinal cord of mice following blockade of ETAR, ETBR or a combination thereof. The findings of the present study therefore suggested an association between ETAR and ETBR in regulating early pathogenesis of SCI and determining the outcomes of long-term neurological recovery.