Cargando…
A Scalable Computational Framework for Establishing Long-Term Behavior of Stochastic Reaction Networks
Reaction networks are systems in which the populations of a finite number of species evolve through predefined interactions. Such networks are found as modeling tools in many biological disciplines such as biochemistry, ecology, epidemiology, immunology, systems biology and synthetic biology. It is...
Autores principales: | Gupta, Ankit, Briat, Corentin, Khammash, Mustafa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072526/ https://www.ncbi.nlm.nih.gov/pubmed/24968191 http://dx.doi.org/10.1371/journal.pcbi.1003669 |
Ejemplares similares
-
DeepCME: A deep learning framework for computing solution statistics of the chemical master equation
por: Gupta, Ankit, et al.
Publicado: (2021) -
Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks
por: Mélykúti, Bence, et al.
Publicado: (2014) -
Universal structural requirements for maximal robust perfect adaptation in biomolecular networks
por: Gupta, Ankit, et al.
Publicado: (2022) -
Frequency spectra and the color of cellular noise
por: Gupta, Ankit, et al.
Publicado: (2022) -
Scalable and flexible inference framework for stochastic dynamic single-cell models
por: Persson, Sebastian, et al.
Publicado: (2022)