Cargando…

Neural synchrony examined with magnetoencephalography (MEG) during eye gaze processing in autism spectrum disorders: preliminary findings

BACKGROUND: Gaze processing deficits are a seminal, early, and enduring behavioral deficit in autism spectrum disorder (ASD); however, a comprehensive characterization of the neural processes mediating abnormal gaze processing in ASD has yet to be conducted. METHODS: This study investigated whole-br...

Descripción completa

Detalles Bibliográficos
Autores principales: Lajiness-O’Neill, Renée, Richard, Annette E, Moran, John E, Olszewski, Amy, Pawluk, Lesley, Jacobson, Daniel, Mansour, Alfred, Vogt, Kelly, Erdodi, Laszlo A, Moore, Aimee M, Bowyer, Susan M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072845/
https://www.ncbi.nlm.nih.gov/pubmed/24976870
http://dx.doi.org/10.1186/1866-1955-6-15
Descripción
Sumario:BACKGROUND: Gaze processing deficits are a seminal, early, and enduring behavioral deficit in autism spectrum disorder (ASD); however, a comprehensive characterization of the neural processes mediating abnormal gaze processing in ASD has yet to be conducted. METHODS: This study investigated whole-brain patterns of neural synchrony during passive viewing of direct and averted eye gaze in ASD adolescents and young adults (M( Age ) = 16.6) compared to neurotypicals (NT) (M( Age ) = 17.5) while undergoing magnetoencephalography. Coherence between each pair of 54 brain regions within each of three frequency bands (low frequency (0 to 15 Hz), beta (15 to 30 Hz), and low gamma (30 to 45 Hz)) was calculated. RESULTS: Significantly higher coherence and synchronization in posterior brain regions (temporo-parietal-occipital) across all frequencies was evident in ASD, particularly within the low 0 to 15 Hz frequency range. Higher coherence in fronto-temporo-parietal regions was noted in NT. A significantly higher number of low frequency cross-hemispheric synchronous connections and a near absence of right intra-hemispheric coherence in the beta frequency band were noted in ASD. Significantly higher low frequency coherent activity in bilateral temporo-parieto-occipital cortical regions and higher gamma band coherence in right temporo-parieto-occipital brain regions during averted gaze was related to more severe symptomology as reported on the Autism Diagnostic Interview-Revised (ADI-R). CONCLUSIONS: The preliminary results suggest a pattern of aberrant connectivity that includes higher low frequency synchronization in posterior cortical regions, lack of long-range right hemispheric beta and gamma coherence, and decreased coherence in fronto-temporo-parietal regions necessary for orienting to shifts in eye gaze in ASD; a critical behavior essential for social communication.