Cargando…
On the selection of appropriate distances for gene expression data clustering
BACKGROUND: Clustering is crucial for gene expression data analysis. As an unsupervised exploratory procedure its results can help researchers to gain insights and formulate new hypothesis about biological data from microarrays. Given different settings of microarray experiments, clustering proves i...
Autores principales: | Jaskowiak, Pablo A, Campello, Ricardo JGB, Costa, Ivan G |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072854/ https://www.ncbi.nlm.nih.gov/pubmed/24564555 http://dx.doi.org/10.1186/1471-2105-15-S2-S2 |
Ejemplares similares
-
Impact of missing data imputation methods on gene expression clustering and classification
por: de Souto, Marcilio CP, et al.
Publicado: (2015) -
Nonlinear gene cluster analysis with labeling for microarray gene expression data in organ development
por: Ehler, Martin, et al.
Publicado: (2011) -
AMCP Partnership Forum: Optimizing Prior Authorization for Appropriate Medication Selection
Publicado: (2020) -
Semi-supervised learning for the identification of syn-expressed genes from fused microarray and in situ image data
por: Costa, Ivan G, et al.
Publicado: (2007) -
Genomic distance under gene substitutions
por: Braga, Marília D V, et al.
Publicado: (2011)