Cargando…
A structured approach to design-for-frequency problems using the Cayley-Hamilton theorem
An inverse eigenvalue problem approach to system design is considered. The Cayley-Hamilton theorem is developed for the general case involving the generalized eigenvalue vibration problem. Since many solutions exist for a desired frequency spectrum, a discussion of the required design information an...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072878/ https://www.ncbi.nlm.nih.gov/pubmed/25019037 http://dx.doi.org/10.1186/2193-1801-3-272 |
Sumario: | An inverse eigenvalue problem approach to system design is considered. The Cayley-Hamilton theorem is developed for the general case involving the generalized eigenvalue vibration problem. Since many solutions exist for a desired frequency spectrum, a discussion of the required design information and suggestions for including structural constraints are given. An algorithm for solving the inverse eigenvalue design problem using the generalized Cayley-Hamilton theorem is proposed. A method for solving partially described systems is also specified. The Cayley-Hamilton theorem algorithm is shown to be a good design tool for solving inverse eigenvalue problems of mechanical and structural systems. |
---|