Cargando…
Proof by synthesis of Tobacco mosaic virus
BACKGROUND: Synthetic biology is a discipline that includes making life forms artificially from chemicals. Here, a DNA molecule was enzymatically synthesized in vitro from DNA templates made from oligonucleotides representing the text of the first Tobacco mosaic virus (TMV) sequence elucidated in 19...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072989/ https://www.ncbi.nlm.nih.gov/pubmed/24887356 http://dx.doi.org/10.1186/gb-2014-15-5-r67 |
_version_ | 1782323049605890048 |
---|---|
author | Cooper, Bret |
author_facet | Cooper, Bret |
author_sort | Cooper, Bret |
collection | PubMed |
description | BACKGROUND: Synthetic biology is a discipline that includes making life forms artificially from chemicals. Here, a DNA molecule was enzymatically synthesized in vitro from DNA templates made from oligonucleotides representing the text of the first Tobacco mosaic virus (TMV) sequence elucidated in 1982. No infectious DNA molecule of that seminal reference sequence exists, so the goal was to synthesize it and then build viral chimeras. RESULTS: RNA was transcribed from synthetic DNA and encapsidated with capsid protein in vitro to make synthetic virions. Plants inoculated with the virions did not develop symptoms. When two nucleotide mutations present in the original sequence, but not present in most other TMV sequences in GenBank, were altered to reflect the consensus, the derivative synthetic virions produced classic TMV symptoms. Chimeras were then made by exchanging TMV capsid protein DNA with Tomato mosaic virus (ToMV) and Barley stripe mosaic virus (BSMV) capsid protein DNA. Virus expressing ToMV capsid protein exhibited altered, ToMV-like symptoms in Nicotiana sylvestris. A hybrid ORF6 protein unknown to nature, created by substituting the capsid protein genes in the virus, was found to be a major symptom determinant in Nicotiana benthamiana. Virus expressing BSMV capsid protein did not have an extended host range to barley, but did produce novel symptoms in N. benthamiana. CONCLUSIONS: This first report of the chemical synthesis and artificial assembly of a plant virus corrects a long-standing error in the TMV reference genome sequence and reveals that unnatural hybrid virus proteins can alter symptoms unexpectedly. |
format | Online Article Text |
id | pubmed-4072989 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40729892014-06-28 Proof by synthesis of Tobacco mosaic virus Cooper, Bret Genome Biol Research BACKGROUND: Synthetic biology is a discipline that includes making life forms artificially from chemicals. Here, a DNA molecule was enzymatically synthesized in vitro from DNA templates made from oligonucleotides representing the text of the first Tobacco mosaic virus (TMV) sequence elucidated in 1982. No infectious DNA molecule of that seminal reference sequence exists, so the goal was to synthesize it and then build viral chimeras. RESULTS: RNA was transcribed from synthetic DNA and encapsidated with capsid protein in vitro to make synthetic virions. Plants inoculated with the virions did not develop symptoms. When two nucleotide mutations present in the original sequence, but not present in most other TMV sequences in GenBank, were altered to reflect the consensus, the derivative synthetic virions produced classic TMV symptoms. Chimeras were then made by exchanging TMV capsid protein DNA with Tomato mosaic virus (ToMV) and Barley stripe mosaic virus (BSMV) capsid protein DNA. Virus expressing ToMV capsid protein exhibited altered, ToMV-like symptoms in Nicotiana sylvestris. A hybrid ORF6 protein unknown to nature, created by substituting the capsid protein genes in the virus, was found to be a major symptom determinant in Nicotiana benthamiana. Virus expressing BSMV capsid protein did not have an extended host range to barley, but did produce novel symptoms in N. benthamiana. CONCLUSIONS: This first report of the chemical synthesis and artificial assembly of a plant virus corrects a long-standing error in the TMV reference genome sequence and reveals that unnatural hybrid virus proteins can alter symptoms unexpectedly. BioMed Central 2014 2014-04-30 /pmc/articles/PMC4072989/ /pubmed/24887356 http://dx.doi.org/10.1186/gb-2014-15-5-r67 Text en Copyright © 2014 Cooper; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Cooper, Bret Proof by synthesis of Tobacco mosaic virus |
title | Proof by synthesis of Tobacco mosaic virus |
title_full | Proof by synthesis of Tobacco mosaic virus |
title_fullStr | Proof by synthesis of Tobacco mosaic virus |
title_full_unstemmed | Proof by synthesis of Tobacco mosaic virus |
title_short | Proof by synthesis of Tobacco mosaic virus |
title_sort | proof by synthesis of tobacco mosaic virus |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072989/ https://www.ncbi.nlm.nih.gov/pubmed/24887356 http://dx.doi.org/10.1186/gb-2014-15-5-r67 |
work_keys_str_mv | AT cooperbret proofbysynthesisoftobaccomosaicvirus |