Cargando…

Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of struct...

Descripción completa

Detalles Bibliográficos
Autores principales: Accardo, Angelo, Di Fabrizio, Enzo, Limongi, Tania, Marinaro, Giovanni, Riekel, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073955/
https://www.ncbi.nlm.nih.gov/pubmed/24971957
http://dx.doi.org/10.1107/S1600577514009849
Descripción
Sumario:Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data.