Cargando…

Respiratory Infections Cause the Release of Extracellular Vesicles: Implications in Exacerbation of Asthma/COPD

BACKGROUND: Infection-related exacerbations of respiratory diseases are a major health concern; thus understanding the mechanisms driving them is of paramount importance. Despite distinct inflammatory profiles and pathological differences, asthma and COPD share a common clinical facet: raised airway...

Descripción completa

Detalles Bibliográficos
Autores principales: Eltom, Suffwan, Dale, Nicole, Raemdonck, Kristof R. G., Stevenson, Christopher S., Snelgrove, Robert J., Sacitharan, Pradeep K., Recchi, Chiara, Wavre-Shapton, Silene, McAuley, Daniel F., O'Kane, Cecilia, Belvisi, Maria G., Birrell, Mark A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074193/
https://www.ncbi.nlm.nih.gov/pubmed/24972036
http://dx.doi.org/10.1371/journal.pone.0101087
Descripción
Sumario:BACKGROUND: Infection-related exacerbations of respiratory diseases are a major health concern; thus understanding the mechanisms driving them is of paramount importance. Despite distinct inflammatory profiles and pathological differences, asthma and COPD share a common clinical facet: raised airway ATP levels. Furthermore, evidence is growing to suggest that infective agents can cause the release of extracellular vesicle (EVs) in vitro and in bodily fluids. ATP can evoke the P2X(7)/caspase 1 dependent release of IL-1β/IL-18 from EVs; these cytokines are associated with neutrophilia and are increased during exacerbations. Thus we hypothesized that respiratory infections causes the release of EVs in the airway and that the raised ATP levels, present in respiratory disease, triggers the release of IL-1β/IL-18, neutrophilia and subsequent disease exacerbations. METHODS: To begin to test this hypothesis we utilised human cell-based assays, ex vivo murine BALF, in vivo pre-clinical models and human samples to test this hypothesis. RESULTS: Data showed that in a murine model of COPD, known to have increased airway ATP levels, infective challenge causes exacerbated inflammation. Using cell-based systems, murine models and samples collected from challenged healthy subjects, we showed that infection can trigger the release of EVs. When exposed to ATP the EVs release IL-1β/IL-18 via a P2X(7)/caspase-dependent mechanism. Furthermore ATP challenge can cause a P2X(7) dependent increase in LPS-driven neutrophilia. CONCLUSIONS: This preliminary data suggests a possible mechanism for how infections could exacerbate respiratory diseases and may highlight a possible signalling pathway for drug discovery efforts in this area.