Cargando…
Graphene from Amorphous Titanium Carbide by Chlorination under 200°C and Atmospheric Pressures
The synthesis of graphene via decomposition of SiC has opened a promising route for large-scale production of graphene. However, extremely high requirements for almost perfectly ordered crystal SiC and harsh process conditions such as high temperatures (>1200°C) and ultra-high vacuum are two sign...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074788/ https://www.ncbi.nlm.nih.gov/pubmed/24974942 http://dx.doi.org/10.1038/srep05494 |
Sumario: | The synthesis of graphene via decomposition of SiC has opened a promising route for large-scale production of graphene. However, extremely high requirements for almost perfectly ordered crystal SiC and harsh process conditions such as high temperatures (>1200°C) and ultra-high vacuum are two significant challenges hindering its wide use to synthesize graphene by decomposition of SiC. Here, we show that the readily available precursor of carbides, amorphous TiC (a-Ti(1-x)C(x)), can be transformed into graphene nanosheets (GNS) with tunable layers by chlorination method at very low temperatures (200°C) and ambient pressures. Moreover, freestanding GNS can be achieved by stripping off GNS from the surface of resulting particles. Therefore, our strategy, the direct transformation of a-Ti(1-x)C(x) into graphene, is simple and expected to be easily scaled up. |
---|