Cargando…
Semi-supervised learning for potential human microRNA-disease associations inference
MicroRNAs play critical role in the development and progression of various diseases. Predicting potential miRNA-disease associations from vast amount of biological data is an important problem in the biomedical research. Considering the limitations in previous methods, we developed Regularized Least...
Autores principales: | Chen, Xing, Yan, Gui-Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074792/ https://www.ncbi.nlm.nih.gov/pubmed/24975600 http://dx.doi.org/10.1038/srep05501 |
Ejemplares similares
-
A semi-supervised machine learning framework for microRNA classification
por: Sheikh Hassani, Mohsen, et al.
Publicado: (2019) -
Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a Semi-Supervised Classifier
por: Chen, Xing, et al.
Publicado: (2012) -
Inferring Disease-Associated MicroRNAs Using Semi-supervised Multi-Label Graph Convolutional Networks
por: Pan, Xiaoyong, et al.
Publicado: (2019) -
Supervised, semi-supervised and unsupervised inference of gene regulatory networks
por: Maetschke, Stefan R., et al.
Publicado: (2014) -
Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach
por: Pio, Gianvito, et al.
Publicado: (2014)