Cargando…

Minimization of Temperature Ranges between the Top and Bottom of an Air Flow Controlling Device through Hybrid Control in a Plant Factory

To maintain the production timing, productivity, and product quality of plant factories, it is necessary to keep the growth environment uniform. A vertical multistage type of plant factory involves different levels of growing trays, which results in the problem of difference in temperature among ver...

Descripción completa

Detalles Bibliográficos
Autores principales: Moon, Seung-Mi, Kwon, Sook-Youn, Lim, Jae-Hyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074998/
https://www.ncbi.nlm.nih.gov/pubmed/25013867
http://dx.doi.org/10.1155/2014/801590
Descripción
Sumario:To maintain the production timing, productivity, and product quality of plant factories, it is necessary to keep the growth environment uniform. A vertical multistage type of plant factory involves different levels of growing trays, which results in the problem of difference in temperature among vertically different locations. To address it, it is necessary to install air flow devices such as air flow fan and cooling/heating device at the proper locations in order to facilitate air circulation in the facility as well as develop a controlling technology for efficient operation. Accordingly, this study compares the temperature and air distribution within the space of a vertical multistage closed-type plant factory by controlling cooling/heating devices and air flow fans harmoniously by means of the specially designed testbed. The experiment results indicate that in the hybrid control of cooling and heating devices and air flow fans, the difference in temperature decreased by as much as 78.9% compared to that when only cooling and heating devices were operated; the air distribution was improved by as much as 63.4%.