Cargando…
Nonaggregated α-Synuclein Influences SNARE-Dependent Vesicle Docking via Membrane Binding
[Image: see text] α-Synuclein (α-Syn), a major component of Lewy body that is considered as the hallmark of Parkinson’s disease (PD), has been implicated in neuroexocytosis. Overexpression of α-Syn decreases the neurotransmitter release. However, the mechanism by which α-Syn buildup inhibits the neu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075992/ https://www.ncbi.nlm.nih.gov/pubmed/24884175 http://dx.doi.org/10.1021/bi5002536 |
Sumario: | [Image: see text] α-Synuclein (α-Syn), a major component of Lewy body that is considered as the hallmark of Parkinson’s disease (PD), has been implicated in neuroexocytosis. Overexpression of α-Syn decreases the neurotransmitter release. However, the mechanism by which α-Syn buildup inhibits the neurotransmitter release is still unclear. Here, we investigated the effect of nonaggregated α-Syn on SNARE-dependent liposome fusion using fluorescence methods. In ensemble in vitro assays, α-Syn reduces lipid mixing mediated by SNAREs. Furthermore, with the more advanced single-vesicle assay that can distinguish vesicle docking from fusion, we found that α-Syn specifically inhibits vesicle docking, without interfering with the fusion. The inhibition in vesicle docking requires α-Syn binding to acidic lipid containing membranes. Thus, these results imply the existence of at least two mechanisms of inhibition of SNARE-dependent membrane fusion: at high concentrations, nonaggregated α-Syn inhibits docking by binding acidic lipids but not v-SNARE; on the other hand, at much lower concentrations, large α-Syn oligomers inhibit via a mechanism that requires v-SNARE interaction [Choi et al. Proc. Natl. Acad. Sci. U. S. A.2013, 110 (10), 4087−409223431141]. |
---|