Cargando…

Transcriptome Analysis of Dastarcus helophoroides (Coleoptera: Bothrideridae) Using Illumina HiSeq Sequencing

BACKGROUND: Dastarcus helophoroides is known as the most valuable natural enemy insect against many large-body longhorned beetles. The molecular mechanism of its long lifespan and reproduction makes it a unique resource for genomic research. However, molecular biological studies on this parasitic be...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Wei, Song, Wang, Zhang, Zhengqing, Wang, Haidong, Yang, Miaomiao, Guo, Ruijian, Li, Menglou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076278/
https://www.ncbi.nlm.nih.gov/pubmed/24979346
http://dx.doi.org/10.1371/journal.pone.0100673
Descripción
Sumario:BACKGROUND: Dastarcus helophoroides is known as the most valuable natural enemy insect against many large-body longhorned beetles. The molecular mechanism of its long lifespan and reproduction makes it a unique resource for genomic research. However, molecular biological studies on this parasitic beetle are scarce, and genomic information for D. helophoroides is not currently available. Thus, transcriptome information for this species is an important resource that is required for a better understanding of the molecular mechanisms of D. helophoroides. In this study, we obtained transcriptome information of D. helophoroides using high-throughput RNA sequencing. RESULTS: Using Illumina HiSeq 2000 sequencing, 27,543,746 clean reads corresponding to a total of 2.48 Gb nucleotides were obtained from a single run. These reads were assembled into 42,810 unigenes with a mean length of 683 bp. Using a sequence similarity search against the five public databases (NR, Swiss-Prot, GO, COG, KEGG) with a cut-off E-value of 10(−5) using Blastx, a total of 31,293 unigenes were annotated with gene description, gene ontology terms, or metabolic pathways. CONCLUSIONS: To the best of our knowledge, this is the first study on the transcriptome information of D. helophoroides. The transcriptome data presented in this study provide comprehensive information for future studies in D. helophoroides, particularly for functional genomic studies in this parasitic beetle.