Cargando…
Identification of 17 Highly Expressed Genes within Mouse Lumbar Spinal Cord Anterior Horn Region from an In-Situ Hybridization Atlas of 3430 Genes: Implications for Motor Neuron Disease
In an effort to find possible new gene candidates involved in the causation of amyotrophic lateral sclerosis (ALS), a prior version of the on-line brain gene expression atlas GENSAT was extensively searched for selectively intense expression within spinal motor neurons. Using autoradiographic data o...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PAGEPress Publications, Pavia, Italy
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077210/ https://www.ncbi.nlm.nih.gov/pubmed/24987504 http://dx.doi.org/10.4081/ni.2014.5367 |
_version_ | 1782323568310222848 |
---|---|
author | Meyer, Michael A. |
author_facet | Meyer, Michael A. |
author_sort | Meyer, Michael A. |
collection | PubMed |
description | In an effort to find possible new gene candidates involved in the causation of amyotrophic lateral sclerosis (ALS), a prior version of the on-line brain gene expression atlas GENSAT was extensively searched for selectively intense expression within spinal motor neurons. Using autoradiographic data of in-situ hybridization from 3430 genes, a search for selectively intense activity was made for the anterior horn region of murine lumbar spinal cord sectioned in the axial plane. Of 3430 genes, a group of 17 genes was found to be highly expressed within the anterior horn suggesting localization to its primary cellular constituent, the alpha spinal motor neuron. For some genes, an inter-relationship to ALS was already known, such as for heavy, medium, and light neurofilaments, and peripherin. Other genes identified include: Gamma Synuclein, GDNF, SEMA3A, Extended Synaptotagmin-like protein 1, LYNX1, HSPA12a, Cadherin 22, PRKACA, TPPP3 as well as Choline Acetyltransferase, Janus Kinase 1, and the Motor Neuron and Pancreas Homeobox 1. Based on this study, Fibroblast Growth Factor 1 was found to have a particularly selective and intense localization pattern to the ventral horn and may be a good target for development of motor neuron disease therapies; further research is needed. |
format | Online Article Text |
id | pubmed-4077210 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | PAGEPress Publications, Pavia, Italy |
record_format | MEDLINE/PubMed |
spelling | pubmed-40772102014-07-01 Identification of 17 Highly Expressed Genes within Mouse Lumbar Spinal Cord Anterior Horn Region from an In-Situ Hybridization Atlas of 3430 Genes: Implications for Motor Neuron Disease Meyer, Michael A. Neurol Int Article In an effort to find possible new gene candidates involved in the causation of amyotrophic lateral sclerosis (ALS), a prior version of the on-line brain gene expression atlas GENSAT was extensively searched for selectively intense expression within spinal motor neurons. Using autoradiographic data of in-situ hybridization from 3430 genes, a search for selectively intense activity was made for the anterior horn region of murine lumbar spinal cord sectioned in the axial plane. Of 3430 genes, a group of 17 genes was found to be highly expressed within the anterior horn suggesting localization to its primary cellular constituent, the alpha spinal motor neuron. For some genes, an inter-relationship to ALS was already known, such as for heavy, medium, and light neurofilaments, and peripherin. Other genes identified include: Gamma Synuclein, GDNF, SEMA3A, Extended Synaptotagmin-like protein 1, LYNX1, HSPA12a, Cadherin 22, PRKACA, TPPP3 as well as Choline Acetyltransferase, Janus Kinase 1, and the Motor Neuron and Pancreas Homeobox 1. Based on this study, Fibroblast Growth Factor 1 was found to have a particularly selective and intense localization pattern to the ventral horn and may be a good target for development of motor neuron disease therapies; further research is needed. PAGEPress Publications, Pavia, Italy 2014-06-16 /pmc/articles/PMC4077210/ /pubmed/24987504 http://dx.doi.org/10.4081/ni.2014.5367 Text en ©Copyright M.A. Meyer http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Meyer, Michael A. Identification of 17 Highly Expressed Genes within Mouse Lumbar Spinal Cord Anterior Horn Region from an In-Situ Hybridization Atlas of 3430 Genes: Implications for Motor Neuron Disease |
title | Identification of 17 Highly Expressed Genes within Mouse Lumbar Spinal Cord Anterior Horn Region from an In-Situ Hybridization Atlas of 3430 Genes: Implications for Motor Neuron Disease |
title_full | Identification of 17 Highly Expressed Genes within Mouse Lumbar Spinal Cord Anterior Horn Region from an In-Situ Hybridization Atlas of 3430 Genes: Implications for Motor Neuron Disease |
title_fullStr | Identification of 17 Highly Expressed Genes within Mouse Lumbar Spinal Cord Anterior Horn Region from an In-Situ Hybridization Atlas of 3430 Genes: Implications for Motor Neuron Disease |
title_full_unstemmed | Identification of 17 Highly Expressed Genes within Mouse Lumbar Spinal Cord Anterior Horn Region from an In-Situ Hybridization Atlas of 3430 Genes: Implications for Motor Neuron Disease |
title_short | Identification of 17 Highly Expressed Genes within Mouse Lumbar Spinal Cord Anterior Horn Region from an In-Situ Hybridization Atlas of 3430 Genes: Implications for Motor Neuron Disease |
title_sort | identification of 17 highly expressed genes within mouse lumbar spinal cord anterior horn region from an in-situ hybridization atlas of 3430 genes: implications for motor neuron disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077210/ https://www.ncbi.nlm.nih.gov/pubmed/24987504 http://dx.doi.org/10.4081/ni.2014.5367 |
work_keys_str_mv | AT meyermichaela identificationof17highlyexpressedgeneswithinmouselumbarspinalcordanteriorhornregionfromaninsituhybridizationatlasof3430genesimplicationsformotorneurondisease |