Cargando…
Artificial sunlight and ultraviolet light induced photo-epoxidation of propylene over V-Ti/MCM-41 photocatalyst
The light irradiation parameters, including the wavelength spectrum and intensity of light source, can significantly influence a photocatalytic reaction. This study examines the propylene photo-epoxidation over V-Ti/MCM-41 photocatalyst by using artificial sunlight (Xe lamp with/without an Air Mass...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077301/ https://www.ncbi.nlm.nih.gov/pubmed/24991493 http://dx.doi.org/10.3762/bjnano.5.67 |
Sumario: | The light irradiation parameters, including the wavelength spectrum and intensity of light source, can significantly influence a photocatalytic reaction. This study examines the propylene photo-epoxidation over V-Ti/MCM-41 photocatalyst by using artificial sunlight (Xe lamp with/without an Air Mass 1.5 Global Filter at 1.6/18.5 mW·cm(−2)) and ultraviolet light (Mercury Arc lamp with different filters in the range of 0.1–0.8 mW·cm(−2)). This is the first report of using artificial sunlight to drive the photo-epoxidation of propylene. Over V-Ti/MCM-41 photocatalyst, the propylene oxide (PO) formation rate is 193.0 and 112.1 µmol·g(cat)(−1)·h(−1) with a PO selectivity of 35.0 and 53.7% under UV light and artificial sunlight, respectively. A normalized light utilization (NLU) index is defined and found to correlate well with the rate of both PO formation and C(3)H(6) consumption in log–log scale. The light utilization with a mercury arc lamp is better than with a xenon lamp. The selectivity to PO remains practically unchanged with respect to NLU, suggesting that the photo-epoxidation occurs through the same mechanism under the conditions tested in this study. |
---|