Cargando…

Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

We report on the fabrication of thin coatings based on polylactic acid-chitosan-magnetite-eugenol (PLA-CS-Fe(3)O(4)@EUG) nanospheres by matrix assisted pulsed laser evaporation (MAPLE). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) investigation proved that the homoge...

Descripción completa

Detalles Bibliográficos
Autores principales: Holban, Alina Maria, Grumezescu, Valentina, Grumezescu, Alexandru Mihai, Vasile, Bogdan Ştefan, Truşcă, Roxana, Cristescu, Rodica, Socol, Gabriel, Iordache, Florin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077416/
https://www.ncbi.nlm.nih.gov/pubmed/24991524
http://dx.doi.org/10.3762/bjnano.5.99
_version_ 1782323599030353920
author Holban, Alina Maria
Grumezescu, Valentina
Grumezescu, Alexandru Mihai
Vasile, Bogdan Ştefan
Truşcă, Roxana
Cristescu, Rodica
Socol, Gabriel
Iordache, Florin
author_facet Holban, Alina Maria
Grumezescu, Valentina
Grumezescu, Alexandru Mihai
Vasile, Bogdan Ştefan
Truşcă, Roxana
Cristescu, Rodica
Socol, Gabriel
Iordache, Florin
author_sort Holban, Alina Maria
collection PubMed
description We report on the fabrication of thin coatings based on polylactic acid-chitosan-magnetite-eugenol (PLA-CS-Fe(3)O(4)@EUG) nanospheres by matrix assisted pulsed laser evaporation (MAPLE). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) investigation proved that the homogenous Fe(3)O(4)@EUG nanoparticles have an average diameter of about 7 nm, while the PLA-CS-Fe(3)O(4)@EUG nanospheres diameter sizes range between 20 and 80 nm. These MAPLE-deposited coatings acted as bioactive nanosystems and exhibited a great antimicrobial effect by impairing the adherence and biofilm formation of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria strains. Moreover, the obtained nano-coatings showed a good biocompatibility and facilitated the normal development of human endothelial cells. These nanosystems may be used as efficient alternatives in treating and preventing bacterial infections.
format Online
Article
Text
id pubmed-4077416
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Beilstein-Institut
record_format MEDLINE/PubMed
spelling pubmed-40774162014-07-02 Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique Holban, Alina Maria Grumezescu, Valentina Grumezescu, Alexandru Mihai Vasile, Bogdan Ştefan Truşcă, Roxana Cristescu, Rodica Socol, Gabriel Iordache, Florin Beilstein J Nanotechnol Full Research Paper We report on the fabrication of thin coatings based on polylactic acid-chitosan-magnetite-eugenol (PLA-CS-Fe(3)O(4)@EUG) nanospheres by matrix assisted pulsed laser evaporation (MAPLE). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) investigation proved that the homogenous Fe(3)O(4)@EUG nanoparticles have an average diameter of about 7 nm, while the PLA-CS-Fe(3)O(4)@EUG nanospheres diameter sizes range between 20 and 80 nm. These MAPLE-deposited coatings acted as bioactive nanosystems and exhibited a great antimicrobial effect by impairing the adherence and biofilm formation of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria strains. Moreover, the obtained nano-coatings showed a good biocompatibility and facilitated the normal development of human endothelial cells. These nanosystems may be used as efficient alternatives in treating and preventing bacterial infections. Beilstein-Institut 2014-06-18 /pmc/articles/PMC4077416/ /pubmed/24991524 http://dx.doi.org/10.3762/bjnano.5.99 Text en Copyright © 2014, Holban et al. https://creativecommons.org/licenses/by/2.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms)
spellingShingle Full Research Paper
Holban, Alina Maria
Grumezescu, Valentina
Grumezescu, Alexandru Mihai
Vasile, Bogdan Ştefan
Truşcă, Roxana
Cristescu, Rodica
Socol, Gabriel
Iordache, Florin
Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique
title Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique
title_full Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique
title_fullStr Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique
title_full_unstemmed Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique
title_short Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique
title_sort antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique
topic Full Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077416/
https://www.ncbi.nlm.nih.gov/pubmed/24991524
http://dx.doi.org/10.3762/bjnano.5.99
work_keys_str_mv AT holbanalinamaria antimicrobialnanospheresthincoatingspreparedbyadvancedpulsedlasertechnique
AT grumezescuvalentina antimicrobialnanospheresthincoatingspreparedbyadvancedpulsedlasertechnique
AT grumezescualexandrumihai antimicrobialnanospheresthincoatingspreparedbyadvancedpulsedlasertechnique
AT vasilebogdanstefan antimicrobialnanospheresthincoatingspreparedbyadvancedpulsedlasertechnique
AT truscaroxana antimicrobialnanospheresthincoatingspreparedbyadvancedpulsedlasertechnique
AT cristescurodica antimicrobialnanospheresthincoatingspreparedbyadvancedpulsedlasertechnique
AT socolgabriel antimicrobialnanospheresthincoatingspreparedbyadvancedpulsedlasertechnique
AT iordacheflorin antimicrobialnanospheresthincoatingspreparedbyadvancedpulsedlasertechnique