Cargando…

Optical modeling-assisted characterization of dye-sensitized solar cells using TiO(2) nanotube arrays as photoanodes

Photovoltaic characteristics of dye-sensitized solar cells (DSSCs) using TiO(2) nanotube (TNT) arrays as photoanodes were investigated. The TNT arrays were 3.3, 11.5, and 20.6 μm long with the pore diameters of 50, 78.6, and 98.7 nm, respectively. The longest TNT array of 20.6 μm in length showed en...

Descripción completa

Detalles Bibliográficos
Autores principales: Yun, Jung-Ho, Kim, Il Ku, Ng, Yun Hau, Wang, Lianzhou, Amal, Rose
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077540/
https://www.ncbi.nlm.nih.gov/pubmed/24991527
http://dx.doi.org/10.3762/bjnano.5.102
Descripción
Sumario:Photovoltaic characteristics of dye-sensitized solar cells (DSSCs) using TiO(2) nanotube (TNT) arrays as photoanodes were investigated. The TNT arrays were 3.3, 11.5, and 20.6 μm long with the pore diameters of 50, 78.6, and 98.7 nm, respectively. The longest TNT array of 20.6 μm in length showed enhanced photovoltaic performances of 3.87% with significantly increased photocurrent density of 8.26 mA·cm(−2). This improvement is attributed to the increased amount of the adsorbed dyes and the improved electron transport property with an increase in TNT length. The initial charge generation rate was improved from 4 × 10(21) s(−1)·cm(−3) to 7 × 10(21) s(−1)·cm(−3) in DSSCs based on optical modelling analysis. The modelling analysis of optical processes inside TNT-based DSSCs using generalized transfer matrix method (GTMM) revealed that the amount of dye and TNT lengths were critical factors influencing the performance of DSSCs, which is consistent with the experimental results.