Cargando…

Hyperoside, a Flavonoid Compound, Inhibits Proliferation and Stimulates Osteogenic Differentiation of Human Osteosarcoma Cells

Osteosarcoma, one of the most common malignant bone tumours, is generally considered a differentiation disease caused by genetic and epigenetic disruptions in the terminal differentiation of osteoblasts. Novel therapies based on the non-cytotoxic induction of cell differentiation-responsive pathways...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ning, Ying, Mei-Dan, Wu, Yong-Ping, Zhou, Zhi-Hong, Ye, Zhao-Ming, Li, Hang, Lin, Ding-Sheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077650/
https://www.ncbi.nlm.nih.gov/pubmed/24983940
http://dx.doi.org/10.1371/journal.pone.0098973
Descripción
Sumario:Osteosarcoma, one of the most common malignant bone tumours, is generally considered a differentiation disease caused by genetic and epigenetic disruptions in the terminal differentiation of osteoblasts. Novel therapies based on the non-cytotoxic induction of cell differentiation-responsive pathways could represent a significant advance in treating osteosarcoma; however, effective pharmaceuticals to induce differentiation are lacking. In the present study, we investigated the effect of hyperoside, a flavonoid compound, on the osteoblastic differentiation of U2OS and MG63 osteosarcoma cells in vitro. Our results demonstrated that hyperoside inhibits the proliferation of osteosarcoma cells by inducing G(0)/G(1) arrest in the cell cycle, without causing obvious cell death. Cell migration assay further suggested that hyperoside could inhibit the invasion potential of osteosarcoma cells. Additionally, osteopontin and runt-related transcription factor 2 protein levels and osteocalcin activation were upregulated dramatically in hyperoside-treated osteosarcoma cells, suggesting that hyperoside may stimulates osteoblastic differentiation in osteosarcoma cells. This differentiation was accompanied by the activation of transforming growth factor (TGF)-β and bone morphogenetic protein-2, suggesting that the hyperoside-induced differentiation involves the TGF-β signalling pathway. To our knowledge, this study is the first to evaluate the differentiation effect of hyperoside in osteosarcoma cells and assess the possible potential for hyperoside treatment as a future therapeutic approach for osteosarcoma differentiation therapy.