Cargando…
Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats
BACKGROUND: In the past, numerous studies revealed that supplementation with carnitine has multiple effects on performance characteristics and gene expression in livestock and model animals. The molecular mechanisms underlying these observations are still largely unknown. Increasing evidence suggest...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078242/ https://www.ncbi.nlm.nih.gov/pubmed/24952657 http://dx.doi.org/10.1186/1471-2164-15-512 |
_version_ | 1782323703954014208 |
---|---|
author | Keller, Janine Ringseis, Robert Eder, Klaus |
author_facet | Keller, Janine Ringseis, Robert Eder, Klaus |
author_sort | Keller, Janine |
collection | PubMed |
description | BACKGROUND: In the past, numerous studies revealed that supplementation with carnitine has multiple effects on performance characteristics and gene expression in livestock and model animals. The molecular mechanisms underlying these observations are still largely unknown. Increasing evidence suggests that microRNAs (miRNAs), a class of small non-coding RNA molecules, play an important role in post-transcriptional regulation of gene expression and thereby influencing several physiological and pathological processes. Based on these findings, the aim of the present study was to investigate the influence of carnitine supplementation on the miRNA expression profile in skeletal muscle of obese Zucker rats using miRNA microarray analysis. RESULTS: Obese Zucker rats supplemented with carnitine had higher concentrations of total carnitine in plasma and muscle than obese control rats (P < 0.05). miRNA expression profiling in skeletal muscle revealed a subset of 152 miRNAs out of the total number of miRNAs analysed (259) were identified to be differentially regulated (adjusted P-value < 0.05) by carnitine supplementation. Compared to the obese control group, 111 miRNAs were up-regulated and 41 down-regulated by carnitine supplementation (adjusted P-value < 0.05). 14 of these miRNAs showed a log2 ratio ≥ 0.5 and 7 miRNAs showed a log2 ratio ≤ −0.5 (adjusted P-value < 0.05). After confirmation by qRT-PCR, 11 miRNAs were found to be up-regulated and 6 miRNAs were down-regulated by carnitine supplementation (P < 0.05). Furthermore, a total of 1,446 target genes within the validated miRNAs were revealed using combined three bioinformatic algorithms. Analysis of Gene Ontology (GO) categories and KEGG pathways of the predicted targets revealed that carnitine supplementation regulates miRNAs that target a large set of genes involved in protein-localization and -transport, regulation of transcription and RNA metabolic processes, as well as genes involved in several signal transduction pathways, like ubiquitin-mediated proteolysis and longterm depression, are targeted by the miRNAs regulated by carnitine supplementation. CONCLUSION: The present study shows for the first time that supplementation of carnitine affects a large set of miRNAs in skeletal muscle of obese Zucker rats suggesting a novel mechanism through which carnitine exerts its multiple effects on gene expression, which were observed during the past. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-512) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4078242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40782422014-07-14 Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats Keller, Janine Ringseis, Robert Eder, Klaus BMC Genomics Research Article BACKGROUND: In the past, numerous studies revealed that supplementation with carnitine has multiple effects on performance characteristics and gene expression in livestock and model animals. The molecular mechanisms underlying these observations are still largely unknown. Increasing evidence suggests that microRNAs (miRNAs), a class of small non-coding RNA molecules, play an important role in post-transcriptional regulation of gene expression and thereby influencing several physiological and pathological processes. Based on these findings, the aim of the present study was to investigate the influence of carnitine supplementation on the miRNA expression profile in skeletal muscle of obese Zucker rats using miRNA microarray analysis. RESULTS: Obese Zucker rats supplemented with carnitine had higher concentrations of total carnitine in plasma and muscle than obese control rats (P < 0.05). miRNA expression profiling in skeletal muscle revealed a subset of 152 miRNAs out of the total number of miRNAs analysed (259) were identified to be differentially regulated (adjusted P-value < 0.05) by carnitine supplementation. Compared to the obese control group, 111 miRNAs were up-regulated and 41 down-regulated by carnitine supplementation (adjusted P-value < 0.05). 14 of these miRNAs showed a log2 ratio ≥ 0.5 and 7 miRNAs showed a log2 ratio ≤ −0.5 (adjusted P-value < 0.05). After confirmation by qRT-PCR, 11 miRNAs were found to be up-regulated and 6 miRNAs were down-regulated by carnitine supplementation (P < 0.05). Furthermore, a total of 1,446 target genes within the validated miRNAs were revealed using combined three bioinformatic algorithms. Analysis of Gene Ontology (GO) categories and KEGG pathways of the predicted targets revealed that carnitine supplementation regulates miRNAs that target a large set of genes involved in protein-localization and -transport, regulation of transcription and RNA metabolic processes, as well as genes involved in several signal transduction pathways, like ubiquitin-mediated proteolysis and longterm depression, are targeted by the miRNAs regulated by carnitine supplementation. CONCLUSION: The present study shows for the first time that supplementation of carnitine affects a large set of miRNAs in skeletal muscle of obese Zucker rats suggesting a novel mechanism through which carnitine exerts its multiple effects on gene expression, which were observed during the past. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-512) contains supplementary material, which is available to authorized users. BioMed Central 2014-06-21 /pmc/articles/PMC4078242/ /pubmed/24952657 http://dx.doi.org/10.1186/1471-2164-15-512 Text en © Keller et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Keller, Janine Ringseis, Robert Eder, Klaus Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats |
title | Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats |
title_full | Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats |
title_fullStr | Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats |
title_full_unstemmed | Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats |
title_short | Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats |
title_sort | supplemental carnitine affects the microrna expression profile in skeletal muscle of obese zucker rats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078242/ https://www.ncbi.nlm.nih.gov/pubmed/24952657 http://dx.doi.org/10.1186/1471-2164-15-512 |
work_keys_str_mv | AT kellerjanine supplementalcarnitineaffectsthemicrornaexpressionprofileinskeletalmuscleofobesezuckerrats AT ringseisrobert supplementalcarnitineaffectsthemicrornaexpressionprofileinskeletalmuscleofobesezuckerrats AT ederklaus supplementalcarnitineaffectsthemicrornaexpressionprofileinskeletalmuscleofobesezuckerrats |