Cargando…

Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats

Despite extensive use of the renovascular/Goldblatt model of hypertension—2K-1C, and the use of renal denervation to treat drug resistant hypertensive patients, autonomic mechanisms that underpin the maintenance of this hypertension are important yet remain unclear. Our aim was to analyse cardiovasc...

Descripción completa

Detalles Bibliográficos
Autores principales: Oliveira-Sales, Elizabeth B., Toward, Marie Ann, Campos, Ruy R., Paton, Julian F.R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079011/
https://www.ncbi.nlm.nih.gov/pubmed/24560525
http://dx.doi.org/10.1016/j.autneu.2014.02.001
_version_ 1782323805327196160
author Oliveira-Sales, Elizabeth B.
Toward, Marie Ann
Campos, Ruy R.
Paton, Julian F.R.
author_facet Oliveira-Sales, Elizabeth B.
Toward, Marie Ann
Campos, Ruy R.
Paton, Julian F.R.
author_sort Oliveira-Sales, Elizabeth B.
collection PubMed
description Despite extensive use of the renovascular/Goldblatt model of hypertension—2K-1C, and the use of renal denervation to treat drug resistant hypertensive patients, autonomic mechanisms that underpin the maintenance of this hypertension are important yet remain unclear. Our aim was to analyse cardiovascular autonomic function by power spectral density analysis of both arterial pressure and pulse interval measured continuously by radio telemetry for 6 weeks after renal artery clipping. Mean arterial pressure increased from 106 ± 5 to 185 ± 2 mm Hg during 5 weeks post clipping when it stabilized. A tachycardia developed during the 4th week, which plateaued between weeks 5 and 6. The gain of the cardiac vagal baroreflex decreased immediately after clipping and continued to do so until the 5th week when it plateaued (from − 2.4 ± 0.09 to − 0.8 ± 0.04 bpm/mm Hg; P < 0.05). A similar time course of changes in the high frequency power spectral density of the pulse interval was observed (decrease from 13.4 ± 0.6 to 8.3 ± 0.01 ms(2); P < 0.05). There was an increase in both the very low frequency and low frequency components of systolic blood pressure that occurred 3 and 4 weeks after clipping, respectively. Thus, we show for the first time the temporal profile of autonomic mechanisms underpinning the initiation, development and maintenance of renovascular hypertension including: an immediate depression of cardiac baroreflex gain followed by a delayed cardiac sympathetic predominance; elevated sympathetic vasomotor drive occurring after the initiation of the hypertension but coinciding during its mid-development and maintenance.
format Online
Article
Text
id pubmed-4079011
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-40790112014-07-07 Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats Oliveira-Sales, Elizabeth B. Toward, Marie Ann Campos, Ruy R. Paton, Julian F.R. Auton Neurosci Article Despite extensive use of the renovascular/Goldblatt model of hypertension—2K-1C, and the use of renal denervation to treat drug resistant hypertensive patients, autonomic mechanisms that underpin the maintenance of this hypertension are important yet remain unclear. Our aim was to analyse cardiovascular autonomic function by power spectral density analysis of both arterial pressure and pulse interval measured continuously by radio telemetry for 6 weeks after renal artery clipping. Mean arterial pressure increased from 106 ± 5 to 185 ± 2 mm Hg during 5 weeks post clipping when it stabilized. A tachycardia developed during the 4th week, which plateaued between weeks 5 and 6. The gain of the cardiac vagal baroreflex decreased immediately after clipping and continued to do so until the 5th week when it plateaued (from − 2.4 ± 0.09 to − 0.8 ± 0.04 bpm/mm Hg; P < 0.05). A similar time course of changes in the high frequency power spectral density of the pulse interval was observed (decrease from 13.4 ± 0.6 to 8.3 ± 0.01 ms(2); P < 0.05). There was an increase in both the very low frequency and low frequency components of systolic blood pressure that occurred 3 and 4 weeks after clipping, respectively. Thus, we show for the first time the temporal profile of autonomic mechanisms underpinning the initiation, development and maintenance of renovascular hypertension including: an immediate depression of cardiac baroreflex gain followed by a delayed cardiac sympathetic predominance; elevated sympathetic vasomotor drive occurring after the initiation of the hypertension but coinciding during its mid-development and maintenance. Elsevier 2014-07 /pmc/articles/PMC4079011/ /pubmed/24560525 http://dx.doi.org/10.1016/j.autneu.2014.02.001 Text en © 2014 The Authors http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
spellingShingle Article
Oliveira-Sales, Elizabeth B.
Toward, Marie Ann
Campos, Ruy R.
Paton, Julian F.R.
Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats
title Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats
title_full Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats
title_fullStr Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats
title_full_unstemmed Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats
title_short Revealing the role of the autonomic nervous system in the development and maintenance of Goldblatt hypertension in rats
title_sort revealing the role of the autonomic nervous system in the development and maintenance of goldblatt hypertension in rats
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079011/
https://www.ncbi.nlm.nih.gov/pubmed/24560525
http://dx.doi.org/10.1016/j.autneu.2014.02.001
work_keys_str_mv AT oliveirasaleselizabethb revealingtheroleoftheautonomicnervoussysteminthedevelopmentandmaintenanceofgoldblatthypertensioninrats
AT towardmarieann revealingtheroleoftheautonomicnervoussysteminthedevelopmentandmaintenanceofgoldblatthypertensioninrats
AT camposruyr revealingtheroleoftheautonomicnervoussysteminthedevelopmentandmaintenanceofgoldblatthypertensioninrats
AT patonjulianfr revealingtheroleoftheautonomicnervoussysteminthedevelopmentandmaintenanceofgoldblatthypertensioninrats