Cargando…
Transcription of Nuclear Organellar DNA in a Model Plant System
Endosymbiotic gene transfer from cytoplasmic organelles (chloroplasts and mitochondria) to the nucleus is an ongoing process in land plants. Although the frequency of organelle DNA migration is high, functional gene transfer is rare because a nuclear promoter is thought necessary for activity in the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079196/ https://www.ncbi.nlm.nih.gov/pubmed/24868015 http://dx.doi.org/10.1093/gbe/evu111 |
_version_ | 1782323823581855744 |
---|---|
author | Wang, Dong Qu, Zhipeng Adelson, David L. Zhu, Jian-Kang Timmis, Jeremy N. |
author_facet | Wang, Dong Qu, Zhipeng Adelson, David L. Zhu, Jian-Kang Timmis, Jeremy N. |
author_sort | Wang, Dong |
collection | PubMed |
description | Endosymbiotic gene transfer from cytoplasmic organelles (chloroplasts and mitochondria) to the nucleus is an ongoing process in land plants. Although the frequency of organelle DNA migration is high, functional gene transfer is rare because a nuclear promoter is thought necessary for activity in the nucleus. Here we show that a chloroplast promoter, 16S rrn, drives nuclear transcription, suggesting that a transferred organellar gene may become active without obtaining a nuclear promoter. Examining the chromatin status of a known de novo chloroplast integrant indicates that plastid DNA inserts into open chromatin and that this relaxed condition is maintained after integration. Transcription of nuclear organelle DNA integrants was explored at the whole genome level by analyzing RNA-seq data of Oryza sativa subsp. japonica, and utilizing sequence polymorphisms to unequivocally discriminate nuclear organelle DNA transcripts from those of bona fide cytoplasmic organelle DNA. Nuclear copies of organelle DNA that are transcribed show a spectrum of transcriptional activity but at comparatively low levels compared with the majority of other nuclear genes. |
format | Online Article Text |
id | pubmed-4079196 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-40791962014-07-02 Transcription of Nuclear Organellar DNA in a Model Plant System Wang, Dong Qu, Zhipeng Adelson, David L. Zhu, Jian-Kang Timmis, Jeremy N. Genome Biol Evol Letter Endosymbiotic gene transfer from cytoplasmic organelles (chloroplasts and mitochondria) to the nucleus is an ongoing process in land plants. Although the frequency of organelle DNA migration is high, functional gene transfer is rare because a nuclear promoter is thought necessary for activity in the nucleus. Here we show that a chloroplast promoter, 16S rrn, drives nuclear transcription, suggesting that a transferred organellar gene may become active without obtaining a nuclear promoter. Examining the chromatin status of a known de novo chloroplast integrant indicates that plastid DNA inserts into open chromatin and that this relaxed condition is maintained after integration. Transcription of nuclear organelle DNA integrants was explored at the whole genome level by analyzing RNA-seq data of Oryza sativa subsp. japonica, and utilizing sequence polymorphisms to unequivocally discriminate nuclear organelle DNA transcripts from those of bona fide cytoplasmic organelle DNA. Nuclear copies of organelle DNA that are transcribed show a spectrum of transcriptional activity but at comparatively low levels compared with the majority of other nuclear genes. Oxford University Press 2014-05-27 /pmc/articles/PMC4079196/ /pubmed/24868015 http://dx.doi.org/10.1093/gbe/evu111 Text en © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Letter Wang, Dong Qu, Zhipeng Adelson, David L. Zhu, Jian-Kang Timmis, Jeremy N. Transcription of Nuclear Organellar DNA in a Model Plant System |
title | Transcription of Nuclear Organellar DNA in a Model Plant System |
title_full | Transcription of Nuclear Organellar DNA in a Model Plant System |
title_fullStr | Transcription of Nuclear Organellar DNA in a Model Plant System |
title_full_unstemmed | Transcription of Nuclear Organellar DNA in a Model Plant System |
title_short | Transcription of Nuclear Organellar DNA in a Model Plant System |
title_sort | transcription of nuclear organellar dna in a model plant system |
topic | Letter |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079196/ https://www.ncbi.nlm.nih.gov/pubmed/24868015 http://dx.doi.org/10.1093/gbe/evu111 |
work_keys_str_mv | AT wangdong transcriptionofnuclearorganellardnainamodelplantsystem AT quzhipeng transcriptionofnuclearorganellardnainamodelplantsystem AT adelsondavidl transcriptionofnuclearorganellardnainamodelplantsystem AT zhujiankang transcriptionofnuclearorganellardnainamodelplantsystem AT timmisjeremyn transcriptionofnuclearorganellardnainamodelplantsystem |