Cargando…
Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L.
BACKGROUND: Protein phosphorylation is one of the most important post-translational modifications involved in the regulation of plant growth and development as well as diverse stress response. As a member of the Poaceae, Brachypodium distachyon L. is a new model plant for wheat and barley as well as...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079959/ https://www.ncbi.nlm.nih.gov/pubmed/24885693 http://dx.doi.org/10.1186/1471-2164-15-375 |
_version_ | 1782323919052603392 |
---|---|
author | Lv, Dong-Wen Li, Xin Zhang, Ming Gu, Ai-Qin Zhen, Shou-Min Wang, Chang Li, Xiao-Hui Yan, Yue-Ming |
author_facet | Lv, Dong-Wen Li, Xin Zhang, Ming Gu, Ai-Qin Zhen, Shou-Min Wang, Chang Li, Xiao-Hui Yan, Yue-Ming |
author_sort | Lv, Dong-Wen |
collection | PubMed |
description | BACKGROUND: Protein phosphorylation is one of the most important post-translational modifications involved in the regulation of plant growth and development as well as diverse stress response. As a member of the Poaceae, Brachypodium distachyon L. is a new model plant for wheat and barley as well as several potential biofuel grasses such as switchgrass. Vegetative growth is vital for biomass accumulation of plants, but knowledge regarding the role of protein phosphorylation modification during vegetative growth, especially in biofuel plants, is far from comprehensive. RESULTS: In this study, we carried out the first large-scale phosphoproteome analysis of seedling leaves in Brachypodium accession Bd21 using TiO(2) microcolumns combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MaxQuant software. A total of 1470 phosphorylation sites in 950 phosphoproteins were identified, and these phosphoproteins were implicated in various molecular functions and basic cellular processes by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Among the 950 phosphoproteins identified, 127 contained 3 to 8 phosphorylation sites. Conservation analysis showed that 93.4% of the 950 phosphoproteins had phosphorylation orthologs in other plant species. Motif-X analysis of the phosphorylation sites identified 13 significantly enriched phosphorylation motifs, of which 3 were novel phosphorylation motifs. Meanwhile, there were 91 phosphoproteins with both multiple phosphorylation sites and multiple phosphorylation motifs. In addition, we identified 58 phosphorylated transcription factors across 21 families and found out 6 significantly over-represented transcription factor families (C3H, Trihelix, CAMTA, TALE, MYB_related and CPP). Eighty-four protein kinases (PKs), 8 protein phosphatases (PPs) and 6 CESAs were recognized as phosphoproteins. CONCLUSIONS: Through a large-scale bioinformatics analysis of the phosphorylation data in seedling leaves, a complicated PKs- and PPs- centered network related to rapid vegetative growth was deciphered in B. distachyon. We revealed a MAPK cascade network that might play the crucial roles during the phosphorylation signal transduction in leaf growth and development. The phosphoproteins and phosphosites identified from our study expanded our knowledge of protein phosphorylation modification in plants, especially in monocots. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-375) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4079959 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40799592014-07-14 Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. Lv, Dong-Wen Li, Xin Zhang, Ming Gu, Ai-Qin Zhen, Shou-Min Wang, Chang Li, Xiao-Hui Yan, Yue-Ming BMC Genomics Research Article BACKGROUND: Protein phosphorylation is one of the most important post-translational modifications involved in the regulation of plant growth and development as well as diverse stress response. As a member of the Poaceae, Brachypodium distachyon L. is a new model plant for wheat and barley as well as several potential biofuel grasses such as switchgrass. Vegetative growth is vital for biomass accumulation of plants, but knowledge regarding the role of protein phosphorylation modification during vegetative growth, especially in biofuel plants, is far from comprehensive. RESULTS: In this study, we carried out the first large-scale phosphoproteome analysis of seedling leaves in Brachypodium accession Bd21 using TiO(2) microcolumns combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MaxQuant software. A total of 1470 phosphorylation sites in 950 phosphoproteins were identified, and these phosphoproteins were implicated in various molecular functions and basic cellular processes by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Among the 950 phosphoproteins identified, 127 contained 3 to 8 phosphorylation sites. Conservation analysis showed that 93.4% of the 950 phosphoproteins had phosphorylation orthologs in other plant species. Motif-X analysis of the phosphorylation sites identified 13 significantly enriched phosphorylation motifs, of which 3 were novel phosphorylation motifs. Meanwhile, there were 91 phosphoproteins with both multiple phosphorylation sites and multiple phosphorylation motifs. In addition, we identified 58 phosphorylated transcription factors across 21 families and found out 6 significantly over-represented transcription factor families (C3H, Trihelix, CAMTA, TALE, MYB_related and CPP). Eighty-four protein kinases (PKs), 8 protein phosphatases (PPs) and 6 CESAs were recognized as phosphoproteins. CONCLUSIONS: Through a large-scale bioinformatics analysis of the phosphorylation data in seedling leaves, a complicated PKs- and PPs- centered network related to rapid vegetative growth was deciphered in B. distachyon. We revealed a MAPK cascade network that might play the crucial roles during the phosphorylation signal transduction in leaf growth and development. The phosphoproteins and phosphosites identified from our study expanded our knowledge of protein phosphorylation modification in plants, especially in monocots. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-375) contains supplementary material, which is available to authorized users. BioMed Central 2014-05-16 /pmc/articles/PMC4079959/ /pubmed/24885693 http://dx.doi.org/10.1186/1471-2164-15-375 Text en © Lv et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Lv, Dong-Wen Li, Xin Zhang, Ming Gu, Ai-Qin Zhen, Shou-Min Wang, Chang Li, Xiao-Hui Yan, Yue-Ming Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. |
title | Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. |
title_full | Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. |
title_fullStr | Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. |
title_full_unstemmed | Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. |
title_short | Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. |
title_sort | large-scale phosphoproteome analysis in seedling leaves of brachypodium distachyon l. |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4079959/ https://www.ncbi.nlm.nih.gov/pubmed/24885693 http://dx.doi.org/10.1186/1471-2164-15-375 |
work_keys_str_mv | AT lvdongwen largescalephosphoproteomeanalysisinseedlingleavesofbrachypodiumdistachyonl AT lixin largescalephosphoproteomeanalysisinseedlingleavesofbrachypodiumdistachyonl AT zhangming largescalephosphoproteomeanalysisinseedlingleavesofbrachypodiumdistachyonl AT guaiqin largescalephosphoproteomeanalysisinseedlingleavesofbrachypodiumdistachyonl AT zhenshoumin largescalephosphoproteomeanalysisinseedlingleavesofbrachypodiumdistachyonl AT wangchang largescalephosphoproteomeanalysisinseedlingleavesofbrachypodiumdistachyonl AT lixiaohui largescalephosphoproteomeanalysisinseedlingleavesofbrachypodiumdistachyonl AT yanyueming largescalephosphoproteomeanalysisinseedlingleavesofbrachypodiumdistachyonl |