Cargando…
Joint clustering of protein interaction networks through Markov random walk
Biological networks obtained by high-throughput profiling or human curation are typically noisy. For functional module identification, single network clustering algorithms may not yield accurate and robust results. In order to borrow information across multiple sources to alleviate such problems due...
Autores principales: | Wang, Yijie, Qian, Xiaoning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080334/ https://www.ncbi.nlm.nih.gov/pubmed/24565376 http://dx.doi.org/10.1186/1752-0509-8-S1-S9 |
Ejemplares similares
-
Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model
por: Jeong, Hyundoo, et al.
Publicado: (2016) -
Accurate multiple network alignment through context-sensitive random walk
por: Jeong, Hyundoo, et al.
Publicado: (2015) -
A novel subgradient-based optimization algorithm for blockmodel functional module identification
por: Wang, Yijie, et al.
Publicado: (2013) -
Protein localization prediction using random walks on graphs
por: Xu, Xiaohua, et al.
Publicado: (2013) -
Accuracy improvement in protein complex prediction from protein interaction networks by refining cluster overlaps
por: Chiam, Tak Chien, et al.
Publicado: (2012)