Cargando…
Insights into mechanism kinematics for protein motion simulation
BACKGROUND: The high demanding computational requirements necessary to carry out protein motion simulations make it difficult to obtain information related to protein motion. On the one hand, molecular dynamics simulation requires huge computational resources to achieve satisfactory motion simulatio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080786/ https://www.ncbi.nlm.nih.gov/pubmed/24923224 http://dx.doi.org/10.1186/1471-2105-15-184 |
_version_ | 1782324040669593600 |
---|---|
author | Diez, Mikel Petuya, Víctor Martínez-Cruz, Luis Alfonso Hernández, Alfonso |
author_facet | Diez, Mikel Petuya, Víctor Martínez-Cruz, Luis Alfonso Hernández, Alfonso |
author_sort | Diez, Mikel |
collection | PubMed |
description | BACKGROUND: The high demanding computational requirements necessary to carry out protein motion simulations make it difficult to obtain information related to protein motion. On the one hand, molecular dynamics simulation requires huge computational resources to achieve satisfactory motion simulations. On the other hand, less accurate procedures such as interpolation methods, do not generate realistic morphs from the kinematic point of view. Analyzing a protein’s movement is very similar to serial robots; thus, it is possible to treat the protein chain as a serial mechanism composed of rotational degrees of freedom. Recently, based on this hypothesis, new methodologies have arisen, based on mechanism and robot kinematics, to simulate protein motion. Probabilistic roadmap method, which discretizes the protein configurational space against a scoring function, or the kinetostatic compliance method that minimizes the torques that appear in bonds, aim to simulate protein motion with a reduced computational cost. RESULTS: In this paper a new viewpoint for protein motion simulation, based on mechanism kinematics is presented. The paper describes a set of methodologies, combining different techniques such as structure normalization normalization processes, simulation algorithms and secondary structure detection procedures. The combination of all these procedures allows to obtain kinematic morphs of proteins achieving a very good computational cost-error rate, while maintaining the biological meaning of the obtained structures and the kinematic viability of the obtained motion. CONCLUSIONS: The procedure presented in this paper, implements different modules to perform the simulation of the conformational change suffered by a protein when exerting its function. The combination of a main simulation procedure assisted by a secondary structure process, and a side chain orientation strategy, allows to obtain a fast and reliable simulations of protein motion. |
format | Online Article Text |
id | pubmed-4080786 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40807862014-07-18 Insights into mechanism kinematics for protein motion simulation Diez, Mikel Petuya, Víctor Martínez-Cruz, Luis Alfonso Hernández, Alfonso BMC Bioinformatics Research Article BACKGROUND: The high demanding computational requirements necessary to carry out protein motion simulations make it difficult to obtain information related to protein motion. On the one hand, molecular dynamics simulation requires huge computational resources to achieve satisfactory motion simulations. On the other hand, less accurate procedures such as interpolation methods, do not generate realistic morphs from the kinematic point of view. Analyzing a protein’s movement is very similar to serial robots; thus, it is possible to treat the protein chain as a serial mechanism composed of rotational degrees of freedom. Recently, based on this hypothesis, new methodologies have arisen, based on mechanism and robot kinematics, to simulate protein motion. Probabilistic roadmap method, which discretizes the protein configurational space against a scoring function, or the kinetostatic compliance method that minimizes the torques that appear in bonds, aim to simulate protein motion with a reduced computational cost. RESULTS: In this paper a new viewpoint for protein motion simulation, based on mechanism kinematics is presented. The paper describes a set of methodologies, combining different techniques such as structure normalization normalization processes, simulation algorithms and secondary structure detection procedures. The combination of all these procedures allows to obtain kinematic morphs of proteins achieving a very good computational cost-error rate, while maintaining the biological meaning of the obtained structures and the kinematic viability of the obtained motion. CONCLUSIONS: The procedure presented in this paper, implements different modules to perform the simulation of the conformational change suffered by a protein when exerting its function. The combination of a main simulation procedure assisted by a secondary structure process, and a side chain orientation strategy, allows to obtain a fast and reliable simulations of protein motion. BioMed Central 2014-06-12 /pmc/articles/PMC4080786/ /pubmed/24923224 http://dx.doi.org/10.1186/1471-2105-15-184 Text en Copyright © 2014 Diez et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Diez, Mikel Petuya, Víctor Martínez-Cruz, Luis Alfonso Hernández, Alfonso Insights into mechanism kinematics for protein motion simulation |
title | Insights into mechanism kinematics for protein motion simulation |
title_full | Insights into mechanism kinematics for protein motion simulation |
title_fullStr | Insights into mechanism kinematics for protein motion simulation |
title_full_unstemmed | Insights into mechanism kinematics for protein motion simulation |
title_short | Insights into mechanism kinematics for protein motion simulation |
title_sort | insights into mechanism kinematics for protein motion simulation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080786/ https://www.ncbi.nlm.nih.gov/pubmed/24923224 http://dx.doi.org/10.1186/1471-2105-15-184 |
work_keys_str_mv | AT diezmikel insightsintomechanismkinematicsforproteinmotionsimulation AT petuyavictor insightsintomechanismkinematicsforproteinmotionsimulation AT martinezcruzluisalfonso insightsintomechanismkinematicsforproteinmotionsimulation AT hernandezalfonso insightsintomechanismkinematicsforproteinmotionsimulation |