Cargando…

Evolution of Enzymatic Activities in the Enolase Superfamily: Galactarate Dehydratase III from Agrobacterium tumefaciens C58

[Image: see text] The genome of Agrobacterium tumefaciens C58 encodes 12 members of the enolase superfamily (ENS), eight of which are members of the mandelate racemase (MR) subgroup and, therefore, likely to be acid sugar dehydratases. Using a library of 77 acid sugars for high-throughput screening,...

Descripción completa

Detalles Bibliográficos
Autores principales: Groninger-Poe, Fiona P., Bouvier, Jason T., Vetting, Matthew W., Kalyanaraman, Chakrapani, Kumar, Ritesh, Almo, Steven C., Jacobson, Matthew P., Gerlt, John A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081050/
https://www.ncbi.nlm.nih.gov/pubmed/24926996
http://dx.doi.org/10.1021/bi5005377
_version_ 1782324054548545536
author Groninger-Poe, Fiona P.
Bouvier, Jason T.
Vetting, Matthew W.
Kalyanaraman, Chakrapani
Kumar, Ritesh
Almo, Steven C.
Jacobson, Matthew P.
Gerlt, John A.
author_facet Groninger-Poe, Fiona P.
Bouvier, Jason T.
Vetting, Matthew W.
Kalyanaraman, Chakrapani
Kumar, Ritesh
Almo, Steven C.
Jacobson, Matthew P.
Gerlt, John A.
author_sort Groninger-Poe, Fiona P.
collection PubMed
description [Image: see text] The genome of Agrobacterium tumefaciens C58 encodes 12 members of the enolase superfamily (ENS), eight of which are members of the mandelate racemase (MR) subgroup and, therefore, likely to be acid sugar dehydratases. Using a library of 77 acid sugars for high-throughput screening, one protein (UniProt entry A9CG74; locus tag Atu4196) showed activity with both m-galactarate and d-galacturonate. Two families of galactarate dehydratases had been discovered previously in the ENS, GalrD/TalrD [Yew, W. S., et al. (2007) Biochemistry46, 9564–9577] and GalrD-II [Rakus, J. F., et al. (2009) Biochemistry48, 11546–11558]; these have different active site acid/base catalysis and have no activity with d-galacturonate. A9CG74 dehydrates m-galactarate to form 2-keto-3-deoxy-galactarate but does not dehydrate d-galacturonate as expected. Instead, when A9CG74 is incubated with d-galacturonate, 3-deoxy-d-xylo-hexarate or 3-deoxy-d-lyxo-hexarate is formed. In this reaction, instead of abstracting the C5 proton α to the carboxylate group, the expected reaction for a member of the ENS, the enzyme apparently abstracts the proton α to the aldehyde group to form 3-deoxy-d-threo-hexulosuronate that undergoes a 1,2-hydride shift similar to the benzylic acid rearrangement to form the observed product. A. tumefaciens C58 does not utilize m-galactarate as a carbon source under the conditions tested in this study, although it does utilize d-galacturonate, which is a likely precursor to m-galactarate. The gene encoding A9CG74 and several genome proximal genes were upregulated with d-galacturonate as the carbon source. One of these, a member of the dihydrodipicolinate synthase superfamily, catalyzes the dehydration and subsequent decarboxylation of 2-keto-3-deoxy-d-galactarate to α-ketoglutarate semialdehyde, thereby providing a pathway for the conversion of m-galactarate to α-ketoglutarate semialdehyde.
format Online
Article
Text
id pubmed-4081050
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-40810502015-06-13 Evolution of Enzymatic Activities in the Enolase Superfamily: Galactarate Dehydratase III from Agrobacterium tumefaciens C58 Groninger-Poe, Fiona P. Bouvier, Jason T. Vetting, Matthew W. Kalyanaraman, Chakrapani Kumar, Ritesh Almo, Steven C. Jacobson, Matthew P. Gerlt, John A. Biochemistry [Image: see text] The genome of Agrobacterium tumefaciens C58 encodes 12 members of the enolase superfamily (ENS), eight of which are members of the mandelate racemase (MR) subgroup and, therefore, likely to be acid sugar dehydratases. Using a library of 77 acid sugars for high-throughput screening, one protein (UniProt entry A9CG74; locus tag Atu4196) showed activity with both m-galactarate and d-galacturonate. Two families of galactarate dehydratases had been discovered previously in the ENS, GalrD/TalrD [Yew, W. S., et al. (2007) Biochemistry46, 9564–9577] and GalrD-II [Rakus, J. F., et al. (2009) Biochemistry48, 11546–11558]; these have different active site acid/base catalysis and have no activity with d-galacturonate. A9CG74 dehydrates m-galactarate to form 2-keto-3-deoxy-galactarate but does not dehydrate d-galacturonate as expected. Instead, when A9CG74 is incubated with d-galacturonate, 3-deoxy-d-xylo-hexarate or 3-deoxy-d-lyxo-hexarate is formed. In this reaction, instead of abstracting the C5 proton α to the carboxylate group, the expected reaction for a member of the ENS, the enzyme apparently abstracts the proton α to the aldehyde group to form 3-deoxy-d-threo-hexulosuronate that undergoes a 1,2-hydride shift similar to the benzylic acid rearrangement to form the observed product. A. tumefaciens C58 does not utilize m-galactarate as a carbon source under the conditions tested in this study, although it does utilize d-galacturonate, which is a likely precursor to m-galactarate. The gene encoding A9CG74 and several genome proximal genes were upregulated with d-galacturonate as the carbon source. One of these, a member of the dihydrodipicolinate synthase superfamily, catalyzes the dehydration and subsequent decarboxylation of 2-keto-3-deoxy-d-galactarate to α-ketoglutarate semialdehyde, thereby providing a pathway for the conversion of m-galactarate to α-ketoglutarate semialdehyde. American Chemical Society 2014-06-13 2014-07-01 /pmc/articles/PMC4081050/ /pubmed/24926996 http://dx.doi.org/10.1021/bi5005377 Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html)
spellingShingle Groninger-Poe, Fiona P.
Bouvier, Jason T.
Vetting, Matthew W.
Kalyanaraman, Chakrapani
Kumar, Ritesh
Almo, Steven C.
Jacobson, Matthew P.
Gerlt, John A.
Evolution of Enzymatic Activities in the Enolase Superfamily: Galactarate Dehydratase III from Agrobacterium tumefaciens C58
title Evolution of Enzymatic Activities in the Enolase Superfamily: Galactarate Dehydratase III from Agrobacterium tumefaciens C58
title_full Evolution of Enzymatic Activities in the Enolase Superfamily: Galactarate Dehydratase III from Agrobacterium tumefaciens C58
title_fullStr Evolution of Enzymatic Activities in the Enolase Superfamily: Galactarate Dehydratase III from Agrobacterium tumefaciens C58
title_full_unstemmed Evolution of Enzymatic Activities in the Enolase Superfamily: Galactarate Dehydratase III from Agrobacterium tumefaciens C58
title_short Evolution of Enzymatic Activities in the Enolase Superfamily: Galactarate Dehydratase III from Agrobacterium tumefaciens C58
title_sort evolution of enzymatic activities in the enolase superfamily: galactarate dehydratase iii from agrobacterium tumefaciens c58
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081050/
https://www.ncbi.nlm.nih.gov/pubmed/24926996
http://dx.doi.org/10.1021/bi5005377
work_keys_str_mv AT groningerpoefionap evolutionofenzymaticactivitiesintheenolasesuperfamilygalactaratedehydrataseiiifromagrobacteriumtumefaciensc58
AT bouvierjasont evolutionofenzymaticactivitiesintheenolasesuperfamilygalactaratedehydrataseiiifromagrobacteriumtumefaciensc58
AT vettingmattheww evolutionofenzymaticactivitiesintheenolasesuperfamilygalactaratedehydrataseiiifromagrobacteriumtumefaciensc58
AT kalyanaramanchakrapani evolutionofenzymaticactivitiesintheenolasesuperfamilygalactaratedehydrataseiiifromagrobacteriumtumefaciensc58
AT kumarritesh evolutionofenzymaticactivitiesintheenolasesuperfamilygalactaratedehydrataseiiifromagrobacteriumtumefaciensc58
AT almostevenc evolutionofenzymaticactivitiesintheenolasesuperfamilygalactaratedehydrataseiiifromagrobacteriumtumefaciensc58
AT jacobsonmatthewp evolutionofenzymaticactivitiesintheenolasesuperfamilygalactaratedehydrataseiiifromagrobacteriumtumefaciensc58
AT gerltjohna evolutionofenzymaticactivitiesintheenolasesuperfamilygalactaratedehydrataseiiifromagrobacteriumtumefaciensc58