Cargando…
scikit-image: image processing in Python
scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081273/ https://www.ncbi.nlm.nih.gov/pubmed/25024921 http://dx.doi.org/10.7717/peerj.453 |
_version_ | 1782324085683912704 |
---|---|
author | van der Walt, Stéfan Schönberger, Johannes L. Nunez-Iglesias, Juan Boulogne, François Warner, Joshua D. Yager, Neil Gouillart, Emmanuelle Yu, Tony |
author_facet | van der Walt, Stéfan Schönberger, Johannes L. Nunez-Iglesias, Juan Boulogne, François Warner, Joshua D. Yager, Neil Gouillart, Emmanuelle Yu, Tony |
author_sort | van der Walt, Stéfan |
collection | PubMed |
description | scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org. |
format | Online Article Text |
id | pubmed-4081273 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-40812732014-07-14 scikit-image: image processing in Python van der Walt, Stéfan Schönberger, Johannes L. Nunez-Iglesias, Juan Boulogne, François Warner, Joshua D. Yager, Neil Gouillart, Emmanuelle Yu, Tony PeerJ Bioinformatics scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org. PeerJ Inc. 2014-06-19 /pmc/articles/PMC4081273/ /pubmed/25024921 http://dx.doi.org/10.7717/peerj.453 Text en © 2014 Van der Walt et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Bioinformatics van der Walt, Stéfan Schönberger, Johannes L. Nunez-Iglesias, Juan Boulogne, François Warner, Joshua D. Yager, Neil Gouillart, Emmanuelle Yu, Tony scikit-image: image processing in Python |
title | scikit-image: image processing in Python |
title_full | scikit-image: image processing in Python |
title_fullStr | scikit-image: image processing in Python |
title_full_unstemmed | scikit-image: image processing in Python |
title_short | scikit-image: image processing in Python |
title_sort | scikit-image: image processing in python |
topic | Bioinformatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081273/ https://www.ncbi.nlm.nih.gov/pubmed/25024921 http://dx.doi.org/10.7717/peerj.453 |
work_keys_str_mv | AT vanderwaltstefan scikitimageimageprocessinginpython AT schonbergerjohannesl scikitimageimageprocessinginpython AT nuneziglesiasjuan scikitimageimageprocessinginpython AT boulognefrancois scikitimageimageprocessinginpython AT warnerjoshuad scikitimageimageprocessinginpython AT yagerneil scikitimageimageprocessinginpython AT gouillartemmanuelle scikitimageimageprocessinginpython AT yutony scikitimageimageprocessinginpython AT scikitimageimageprocessinginpython |